IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3467-d573348.html
   My bibliography  Save this article

Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids

Author

Listed:
  • Isabelo Rabuya

    (Center for Research in Energy Systems and Technologies, University of San Carlos, Cebu City 6000, Philippines
    Department of Electrical and Electronics Engineering, University of San Carlos, Cebu City 6000, Philippines)

  • Melissa Libres

    (Center for Research in Energy Systems and Technologies, University of San Carlos, Cebu City 6000, Philippines
    Department of Electrical and Electronics Engineering, University of San Carlos, Cebu City 6000, Philippines)

  • Michael Lochinvar Abundo

    (Center for Research in Energy Systems and Technologies, University of San Carlos, Cebu City 6000, Philippines
    Saab-NTU Joint Lab, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore)

  • Evelyn Taboada

    (Center for Research in Energy Systems and Technologies, University of San Carlos, Cebu City 6000, Philippines
    Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines)

Abstract

The multi-tier framework (MTF) of electricity access defines a continuum of electrification from tier 0, where access is inexistent or very limited, to tier 5 where access is of grid quality. Transitioning households from lower to higher tiers unlocks the potential in meeting more of their energy needs. This study investigates the transition towards higher tier electricity access on Gilutongan Island, an off-grid island of Cebu, Philippines, which is also an informal settlement community with no open land available for a centralized solar PV system. The solar PV potential of suitable rooftops on the island was determined using satellite imagery, ground measurements, and computation. The electricity demand of a cluster of 11 households was examined in detail; these households, situated near two suitable rooftops, were connected to an installed 7.92 kWp solar PV-based microgrid. Results show that the households moved up from lower to higher tier levels in all MTF attributes except for affordability. Nevertheless, the cost of a standard electricity consumption package of 1 kWh/day dropped from 18% of the average household income to 6%. Moving up on the electrification ladder to higher tier electricity access in off-grid areas is attainable with households clustered as a microgrid using rooftop solar PV. Affordability remains to be the biggest challenge that needs to be addressed.

Suggested Citation

  • Isabelo Rabuya & Melissa Libres & Michael Lochinvar Abundo & Evelyn Taboada, 2021. "Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids," Energies, MDPI, vol. 14(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3467-:d:573348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nishant Narayan & Victor Vega-Garita & Zian Qin & Jelena Popovic-Gerber & Pavol Bauer & Miro Zeman, 2020. "The Long Road to Universal Electrification: A Critical Look at Present Pathways and Challenges," Energies, MDPI, vol. 13(3), pages 1-20, January.
    2. Bertheau, Paul, 2020. "Assessing the impact of renewable energy on local development and the Sustainable Development Goals: Insights from a small Philippine island," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Pelz, Setu & Urpelainen, Johannes, 2020. "Measuring and explaining household access to electrical energy services: Evidence from rural northern India," Energy Policy, Elsevier, vol. 145(C).
    4. Narayan, Nishant & Chamseddine, Ali & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2019. "Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification: Optimal SHS sizing for the multi-tier framework for household electricity access," Applied Energy, Elsevier, vol. 240(C), pages 907-917.
    5. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    6. Bertheau, Paul & Blechinger, Philipp, 2018. "Resilient solar energy island supply to support SDG7 on the Philippines: Techno-economic optimized electrification strategy for small islands," Utilities Policy, Elsevier, vol. 54(C), pages 55-77.
    7. Butera, Federico Maria & Caputo, Paola & Adhikari, Rajendra Singh & Mele, Renata, 2019. "Energy access in informal settlements. Results of a wide on site survey in Rio De Janeiro," Energy Policy, Elsevier, vol. 134(C).
    8. Majbaul Alam & Subhes Bhattacharyya, 2016. "Decentralized Renewable Hybrid Mini-Grids for Sustainable Electrification of the Off-Grid Coastal Areas of Bangladesh," Energies, MDPI, vol. 9(4), pages 1-16, April.
    9. Lozano, Lorafe & Querikiol, Edward M. & Abundo, Michael Lochinvar S. & Bellotindos, Luzvisminda M., 2019. "Techno-economic analysis of a cost-effective power generation system for off-grid island communities: A case study of Gilutongan Island, Cordova, Cebu, Philippines," Renewable Energy, Elsevier, vol. 140(C), pages 905-911.
    10. Amitendu Palit, 2019. "Solar Energy Financing in India," World Scientific Book Chapters, in: S Narayan & Christopher Len & Roshni Kapur (ed.), Sustainable Energy Transition in South Asia Challenges and Opportunities, chapter 10, pages 171-185, World Scientific Publishing Co. Pte. Ltd..
    11. Lozano, Lorafe & Taboada, Evelyn B., 2020. "Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines," Energy Policy, Elsevier, vol. 145(C).
    12. Olivia Francesca B. Agua & Robert Joseph A. Basilio & Mc Erschad D. Pabillan & Michael T. Castro & Philipp Blechinger & Joey D. Ocon, 2020. "Decentralized versus Clustered Microgrids: An Energy Systems Study for Reliable Off-Grid Electrification of Small Islands," Energies, MDPI, vol. 13(17), pages 1-22, August.
    13. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    14. Subbiah, Adritha & Mansoor, Sahar & Misra, Rachita & Jaffer, Huda & Tiwary, Raunak, 2016. "Addressing developmental needs through energy access in informal settlements," LSE Research Online Documents on Economics 83626, London School of Economics and Political Science, LSE Library.
    15. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    16. AbuBakr Bahaj & Luke Blunden & Christopher Kanani & Patrick James & Isaac Kiva & Zoë Matthews & Heather Price & Hildah Essendi & Jane Falkingham & Gerard George, 2019. "The Impact of an Electrical Mini-grid on the Development of a Rural Community in Kenya," Energies, MDPI, vol. 12(5), pages 1-21, February.
    17. John K. Kaldellis, 2021. "Supporting the Clean Electrification for Remote Islands: The Case of the Greek Tilos Island," Energies, MDPI, vol. 14(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grigorios L. Kyriakopoulos & Dalia Streimikiene & Tomas Baležentis, 2022. "Addressing Challenges of Low-Carbon Energy Transition," Energies, MDPI, vol. 15(15), pages 1-7, August.
    2. Jaybee Lacea & Edward Querikiol & Evelyn Taboada, 2021. "Balancing Energy Trilemma Using Hybrid Distributed Rooftop Solar PV (DRSP)/Battery/Diesel Microgrid: A Case Study in Gilutongan Island, Cordova, Cebu, Philippines," Energies, MDPI, vol. 14(21), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    2. Thomas, P.J.M. & Sandwell, P. & Williamson, S.J. & Harper, P.W., 2021. "A PESTLE analysis of solar home systems in refugee camps in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Olivia Francesca B. Agua & Robert Joseph A. Basilio & Mc Erschad D. Pabillan & Michael T. Castro & Philipp Blechinger & Joey D. Ocon, 2020. "Decentralized versus Clustered Microgrids: An Energy Systems Study for Reliable Off-Grid Electrification of Small Islands," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Castro, Michael T. & Pascasio, Jethro Daniel A. & Delina, Laurence L. & Balite, Paul Heherson M. & Ocon, Joey D., 2022. "Techno-economic and financial analyses of hybrid renewable energy system microgrids in 634 Philippine off-grid islands: Policy implications on public subsidies and private investments," Energy, Elsevier, vol. 257(C).
    5. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Bertheau, Paul, 2020. "Assessing the impact of renewable energy on local development and the Sustainable Development Goals: Insights from a small Philippine island," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    9. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    10. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    11. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    12. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    13. Lorafe Lozano & Edward M. Querikiol & Evelyn B. Taboada, 2021. "The Viability of Providing 24-Hour Electricity Access to Off-Grid Island Communities in the Philippines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    14. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    15. Matsumoto, Ken'ichi & Matsumura, Yuko, 2022. "Challenges and economic effects of introducing renewable energy in a remote island: A case study of Tsushima Island, Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Meschede, Henning & Esparcia, Eugene A. & Holzapfel, Peter & Bertheau, Paul & Ang, Rosario C. & Blanco, Ariel C. & Ocon, Joey D., 2019. "On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Miguel H. Fernandez-Fuentes & Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera, 2021. "Characterization of Technological Innovations in Photovoltaic Rural Electrification, Based on the Experiences of Bolivia, Peru, and Argentina: Third Generation Solar Home Systems," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    18. Augusto Montisci & Marco Caredda, 2021. "A Static Hybrid Renewable Energy System for Off-Grid Supply," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    19. Juanpera, M. & Domenech, B. & Ferrer-Martí, L. & Garzón, A. & Pastor, R., 2021. "Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Bertheau, Paul & Cader, Catherina, 2019. "Electricity sector planning for the Philippine islands: Considering centralized and decentralized supply options," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3467-:d:573348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.