IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2922-d557211.html
   My bibliography  Save this article

Reliability and Economic Evaluation of Offshore Wind Power DC Collection Systems

Author

Listed:
  • Ruijuan Sun

    (School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Gayan Abeynayake

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Jun Liang

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Kewen Wang

    (School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract

One key directive to realize the global transition towards net-zero emission goals is to integrate more renewable energy resources into the generation mix. Due to higher and more consistent wind speeds, offshore wind farms (OWFs) have the potential to generate more energy at a steadier rate than their onshore counterpart. However, at the collection system level, all the OWFs use alternating current (AC) technology at present. Nonetheless, with an increasing capacity of the single wind turbine (WT) and larger distances to the shore, the use of direct current (DC) technology at the collection system level is beneficial. To select a suitable DC collection system topology, this paper proposes a comprehensive analytical reliability evaluation method, based on the Universal Generating Function technique, together with associated economic factors. Four candidates DC collection system options were evaluated with different WT capacities for a 400 MW OWF. The availability indices such as Generation Ratio Availability and Expected Energy Not Supplied were used to assess their reliability levels. The results show that the radial topology with a single platform DC/DC converter is more reliable and economical than the other candidate options.

Suggested Citation

  • Ruijuan Sun & Gayan Abeynayake & Jun Liang & Kewen Wang, 2021. "Reliability and Economic Evaluation of Offshore Wind Power DC Collection Systems," Energies, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2922-:d:557211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    2. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    3. Fischetti, Martina & Pisinger, David, 2018. "Optimizing wind farm cable routing considering power losses," European Journal of Operational Research, Elsevier, vol. 270(3), pages 917-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    2. Yuwei Peng & Jiancheng Zhang & Chengxiong Mao & Hongtao Xiong & Tiantian Zhang & Dan Wang, 2021. "A Coordinated Optimal Strategy for Voltage and Reactive Power Control with Adaptive Amplitude Limiter Based on Flexible Excitation System," Energies, MDPI, vol. 14(16), pages 1-13, August.
    3. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    3. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    4. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    5. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
    6. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    7. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    8. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    9. Yu, Xiang, 2023. "An assessment of the green development efficiency of industrial parks in China: Based on non-desired output and non-radial DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 81-88.
    10. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    13. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    14. Yue Han & Xiaosan Ge, 2023. "Spatial–Temporal Characteristics and Influencing Factors on Carbon Emissions from Land Use in Suzhou, the World’s Largest Industrial City in China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    15. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    16. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    17. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    18. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    19. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    20. Yuqiang Wu & Weiwei Guo & Zigong Cai & Yang Tong & Jingpeng Chen, 2023. "Research on Contract Coordination Mechanism of Contract Farming Considering the Green Innovation Level," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2922-:d:557211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.