IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp467-477.html
   My bibliography  Save this article

Feasibility analysis of offshore wind power plants with DC collection grid

Author

Listed:
  • De Prada Gil, Mikel
  • Domínguez-García, J.L.
  • Díaz-González, F.
  • Aragüés-Peñalba, M.
  • Gomis-Bellmunt, Oriol

Abstract

Offshore wind power plants (OWPPs) tend to be larger in size and distant from shore. It is widely accepted that for long distances HVDC links are preferred over HVAC transmission. Accordingly, one possible approach might be to consider not only a DC transmission system but also for the WPP collection grid. In this paper, a technical and economic comparison analysis of the conventional AC OWPP scheme and four proposed DC OWPPs topologies is addressed. Due to the conceptual novelty of DC technologies for OWPPs, uncertainty on electrical parameters and cost functions is relevant. A sensitivity analysis of the cost and efficiency of the components, OWPP rated power, export cable lengths and some economic data is carried out. For this study, a methodology is proposed and implemented in DIgSILENT Power Factory®. To compare conventional AC offshore collector grid and the various proposed DC configurations, an OWPP based on Horn's Rev wind farm is selected as base case. The analysis of the results shows that, in general terms, DC OWPPs present capital costs comparable with conventional AC OWPPs, as well as lower energy losses, concluding that DC collector grid could be of interest for future OWPP installations.

Suggested Citation

  • De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:467-477
    DOI: 10.1016/j.renene.2015.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Hertem, Dirk & Ghandhari, Mehrdad, 2010. "Multi-terminal VSC HVDC for the European supergrid: Obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3156-3163, December.
    2. Serrano González, J. & Burgos Payán, M. & Riquelme Santos, J., 2013. "Optimum design of transmissions systems for offshore wind farms including decision making under risk," Renewable Energy, Elsevier, vol. 59(C), pages 115-127.
    3. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophie Coffey & Victor Timmers & Rui Li & Guanglu Wu & Agustí Egea-Àlvarez, 2021. "Review of MVDC Applications, Technologies, and Future Prospects," Energies, MDPI, vol. 14(24), pages 1-36, December.
    2. Alessandra Follo & Oscar Saborío-Romano & Elisabetta Tedeschi & Nicolaos A. Cutululis, 2021. "Challenges in All-DC Offshore Wind Power Plants," Energies, MDPI, vol. 14(19), pages 1-15, September.
    3. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    4. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    5. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    6. Posada, Jorge Omar Gil & Rennie, Anthony J.R. & Villar, Sofia Perez & Martins, Vitor L. & Marinaccio, Jordan & Barnes, Alistair & Glover, Carol F. & Worsley, David A. & Hall, Peter J., 2017. "Aqueous batteries as grid scale energy storage solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1174-1182.
    7. Ruijuan Sun & Gayan Abeynayake & Jun Liang & Kewen Wang, 2021. "Reliability and Economic Evaluation of Offshore Wind Power DC Collection Systems," Energies, MDPI, vol. 14(10), pages 1-24, May.
    8. Rohan Zafar Butt & Syed Ali Abbas Kazmi & Mohammed Alghassab & Zafar A. Khan & Abdullah Altamimi & Muhammad Imran & Fahad F. Alruwaili, 2022. "Techno-Economic and Environmental Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 14(5), pages 1-31, February.
    9. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    10. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    11. De-Prada-Gil, Mikel & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2015. "DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment," Energy, Elsevier, vol. 86(C), pages 311-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    2. Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
    3. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    4. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    5. Liu, Min & Lu, Da-Gang & Qin, Jianjun & Miao, Yi-Zhi & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2024. "Risk-informed integrated design optimization for offshore wind farm electrical systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    7. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    8. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    9. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    10. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    11. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    12. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.
    13. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
    14. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    15. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    16. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    18. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    19. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    20. Silvio Rodrigues & Carlos Restrepo & George Katsouris & Rodrigo Teixeira Pinto & Maryam Soleimanzadeh & Peter Bosman & Pavol Bauer, 2016. "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures," Energies, MDPI, vol. 9(3), pages 1-42, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:467-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.