IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2190-d353091.html
   My bibliography  Save this article

Smart Building Integration into a Smart City (SBISC): Development of a New Evaluation Framework

Author

Listed:
  • Rasa Apanaviciene

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Andrius Vanagas

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Paris A. Fokaides

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania
    School of Engineering, Frederick University, Nicosia 1036, Cyprus)

Abstract

The aim of this study is to define the features that smart buildings should fulfil in order to be compatible with the overall context of the smart city and to introduce a new evaluation framework of Smart Buildings Integration into a Smart City (SBISC). By analysing scientific literature as well as existing international and local project examples, the features of smart buildings that are expected to be adopted in smart cities were identified. The SBISC evaluation methodology was developed and applied to a set of selected projects. The literature review revealed that the smart building and smart city concepts were developed in different time frames and by different stakeholders and, thus, need to be realigned. The most important aspect is to employ in a smart building all the functionalities proposed by the smart areas of the city and vice versa by enabling the recommended features of smart materials, smart building services, and smart construction to serve for the surrounding systems. Nine office buildings representing smart building concept in different smart cities built within the period 2007–2018 with a total area from 10,000 m 2 to 143,000 m 2 were selected for the analysis. The research of selected projects revealed that the smart buildings have more potential to become smarter by utilizing smart cities capabilities in the areas of smart energy, smart mobility, smart life, and smart environment. Smart cities are the most prominent trend in creating a cohesive environment.

Suggested Citation

  • Rasa Apanaviciene & Andrius Vanagas & Paris A. Fokaides, 2020. "Smart Building Integration into a Smart City (SBISC): Development of a New Evaluation Framework," Energies, MDPI, vol. 13(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2190-:d:353091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fokaides, Paris A. & Polycarpou, Kyriacos & Kalogirou, Soteris, 2017. "The impact of the implementation of the European Energy Performance of Buildings Directive on the European building stock: The case of the Cyprus Land Development Corporation," Energy Policy, Elsevier, vol. 111(C), pages 1-8.
    2. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    3. Fokaides, Paris A. & Christoforou, Elias A. & Kalogirou, Soteris A., 2014. "Legislation driven scenarios based on recent construction advancements towards the achievement of nearly zero energy dwellings in the southern European country of Cyprus," Energy, Elsevier, vol. 66(C), pages 588-597.
    4. Kylili, Angeliki & Fokaides, Paris A., 2015. "Competitive auction mechanisms for the promotion renewable energy technologies: The case of the 50MW photovoltaics projects in Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 226-233.
    5. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    6. Wai-Ming To & Peter K C Lee & King-Hang Lam, 2018. "Building professionals’ intention to use smart and sustainable building technologies – An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    7. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    8. Sanguk Park & Sanghoon Lee & Sangmin Park & Sehyun Park, 2019. "AI-Based Physical and Virtual Platform with 5-Layered Architecture for Sustainable Smart Energy City Development," Sustainability, MDPI, vol. 11(16), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Gu & Shuyu Liu & Xuefan Liu & Yujia Shan & Enyang Hao & Miaomiao Niu, 2023. "Evaluation of the Smart City and Analysis of Its Spatial–Temporal Characteristics in China: A Case Study of 26 Cities in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 12(10), pages 1-23, September.
    2. Tarek Hatem Al-Rimawi & Michael Nadler, 2023. "Evaluating Cities and Real Estate Smartness and Integration: Introducing a Comprehensive Evaluation Framework," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    3. Rasa Apanaviciene & Rokas Urbonas & Paris A. Fokaides, 2020. "Smart Building Integration into a Smart City: Comparative Study of Real Estate Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    4. Lavinia Denisia Cuc & Dana Rad & Daniel Manațe & Silviu Gabriel Szentesi & Anca Dicu & Mioara Florina Pantea & Vanina Adoriana Trifan & Cosmin Silviu Raul Joldeș & Graziella Corina Bâtcă-Dumitru, 2023. "Representations of the Smart Green Concept and the Intention to Implement IoT in Romanian Real Estate Development," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Stefano CARBONI, 2024. "Smart Cities in comparison: An analysis of the best Smart Cities," Smart Cities and Regional Development (SCRD) Journal, Smart-EDU Hub, vol. 8(3), pages 65-78, April.
    6. Joshua Olusegun FAYOMI & Zainab Abdulqadir SANI, 2021. "The future of work in the smart city: Managing virtual work by leveraging smart cities to achieve organizational strategy," Smart Cities and Regional Development (SCRD) Journal, Smart-EDU Hub, vol. 5(3), pages 103-114, July.
    7. Ilaria Vigna & Roberta Pernetti & Giovanni Pernigotto & Andrea Gasparella, 2020. "Analysis of the Building Smart Readiness Indicator Calculation: A Comparative Case-Study with Two Panels of Experts," Energies, MDPI, vol. 13(11), pages 1-18, June.
    8. Lin, Sheng-Hau & Zhang, Hejie & Li, Jia-Hsuan & Ye, Cheng-Zhou & Hsieh, Jing-Chzi, 2022. "Evaluating smart office buildings from a sustainability perspective: A model of hybrid multi-attribute decision-making," Technology in Society, Elsevier, vol. 68(C).
    9. Piotr Pracki & Michał Dziedzicki & Paulina Komorzycka, 2020. "Ceiling and Wall Illumination, Utilance, and Power in Interior Lighting," Energies, MDPI, vol. 13(18), pages 1-21, September.
    10. Jiaxi Luo, 2022. "A Bibliometric Review on Artificial Intelligence for Smart Buildings," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    11. Shirley Kempeneer & Michaël Peeters & Tine Compernolle, 2021. "Bringing the User Back in the Building: An Analysis of ESG in Real Estate and a Behavioral Framework to Guide Future Research," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    12. Zheng Wen Lie & Qing Liang Zheng & Shiyuan Zhou & Hozan Latif Rauf, 2022. "Virtual energy-saving environmental protection building design and implementation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 263-272, March.
    13. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    14. Thomas Märzinger & Doris Österreicher, 2020. "Extending the Application of the Smart Readiness Indicator—A Methodology for the Quantitative Assessment of the Load Shifting Potential of Smart Districts," Energies, MDPI, vol. 13(13), pages 1-24, July.
    15. Mu, Rui & Haershan, Maidina & Wu, Peiyi, 2022. "What organizational conditions, in combination, drive technology enactment in government-led smart city projects?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    16. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    17. Marco Pau & Panagiotis Kapsalis & Zhiyu Pan & George Korbakis & Dario Pellegrino & Antonello Monti, 2022. "MATRYCS—A Big Data Architecture for Advanced Services in the Building Domain," Energies, MDPI, vol. 15(7), pages 1-22, April.
    18. Habib Sadri & Ibrahim Yitmen & Lavinia Chiara Tagliabue & Florian Westphal & Algan Tezel & Afshin Taheri & Goran Sibenik, 2023. "Integration of Blockchain and Digital Twins in the Smart Built Environment Adopting Disruptive Technologies—A Systematic Review," Sustainability, MDPI, vol. 15(4), pages 1-46, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    2. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    3. Oleg Golubchikov & Mary J. Thornbush, 2022. "Smart Cities as Hybrid Spaces of Governance: Beyond the Hard/Soft Dichotomy in Cyber-Urbanization," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    4. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    5. Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    7. Kusumastuti, Ratih Dyah & Nurmala, N. & Rouli, Juliana & Herdiansyah, Herdis, 2022. "Analyzing the factors that influence the seeking and sharing of information on the smart city digital platform: Empirical evidence from Indonesia," Technology in Society, Elsevier, vol. 68(C).
    8. Ben Zhang & Lei Ma & Zheng Liu, 2020. "Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    9. Fang Zhao & Catherine Prentice & Joseph Wallis & Arvind Patel & Marie-France Waxin, 2020. "An integrative study of the implications of the rise of coworking spaces in smart cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 467-486, December.
    10. Adalberto Santos-Júnior & Fernando Almeida-García & Paulo Morgado & Luiz Mendes-Filho, 2020. "Residents’ Quality of Life in Smart Tourism Destinations: A Theoretical Approach," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    11. Marchesani, Filippo & Masciarelli, Francesca & Bikfalvi, Andrea, 2023. "Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    12. Xuanwei Chen & Mingwang Cheng & Xue Yang & Zhen Chu & Kaifeng Duan, 2023. "Smart Cities Are More Populous: Evidence from China," Land, MDPI, vol. 12(10), pages 1-22, October.
    13. Joanna Wyrwa & Magdalena ZaraÅ› & Katarzyna Wolak, 2021. "Smart Solutions in Cities during the Covid-19 Pandemic," Virtual Economics, The London Academy of Science and Business, vol. 4(2), pages 88-103, April.
    14. Clement, Dr. Jessica & Crutzen, Prof. Nathalie, 2021. "How Local Policy Priorities Set the Smart City Agenda," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    15. Sam Preston & Muhammad Usman Mazhar & Richard Bull, 2020. "Citizen Engagement for Co-Creating Low Carbon Smart Cities: Practical Lessons from Nottingham City Council in the UK," Energies, MDPI, vol. 13(24), pages 1-21, December.
    16. Thays A. Oliveira & Miquel Oliver & Helena Ramalhinho, 2020. "Challenges for Connecting Citizens and Smart Cities: ICT, E-Governance and Blockchain," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    17. LEBRUMENT, Norbert & ZUMBO-LEBRUMENT, Cédrine & ROCHETTE, Corinne & ROULET, Thomas J., 2021. "Triggering participation in smart cities: Political efficacy, public administration satisfaction and sense of belonging as drivers of citizens’ intention," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    18. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    19. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    20. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2190-:d:353091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.