IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4375-d287936.html
   My bibliography  Save this article

The State of Smart Cities in China: The Case of Shenzhen

Author

Listed:
  • Richard Hu

    (Faculty of Business, Government and Law, University of Canberra, Bruce, ACT 2601, Australia)

Abstract

China is at the midpoint of its urbanisation—the largest scale in human history. The recent smart city movement is influencing the discourse and practice of China’s urbanisation, with numerous cities claiming to build smart cities and/or adopting some forms of smart city strategies and initiatives. A so-called ‘latecomer’s advantage’ is being exploited to advance their pursuit for a smart city status, not only to catch up with overseas counterparts, but to overtake them and become international leaders. This local-level enthusiasm strikes a chord with the central government’s strategy of building an ‘innovative nation’ to drive its economic transformation towards a knowledge economy. This converging central-local interest is creating a ‘smart city mania’ across the nation, which, however, has not received due attention in the international literature, and thus deserves critical examination and reflection to inform policy debates. To address this gap, this study investigates the state of smart cities in China, based on a case study of Shenzhen, China’s fastest-growing, experimental city. Shenzhen grew from a fishing village into an international metropolis in 40 years, and has now won a nickname of ‘China’s Silicon Valley’ or ‘China’s smartest city’. This study analyses the state of Chinese smart cities and the pursuit for a smart Shenzhen from the perspectives of the smart city as a concept, as an urban development paradigm, and as an urban regime, drawing upon the international smart city literature. It concludes that a technology-centric approach to smart cities in China, as illustrated by the Shenzhen case, have advanced innovation capacity and economic growth through capitalising on a ‘latecomer’s advantage’. However, this ‘latecomer’s advantage’ may translate into a ‘latecomer’s disadvantage’ for this approach’s lack of institutional adaptation, and for its insufficient attention to social and environmental problems covered under the shiny economic boom. This latecomer’s disadvantage is likely to impact the long-term sustainability of Chinese cities.

Suggested Citation

  • Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4375-:d:287936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Hu, 2015. "Sustainable Development Strategy for the Global City: A Case Study of Sydney," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
    2. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    3. Luca Mora & Roberto Bolici & Mark Deakin, 2017. "The First Two Decades of Smart-City Research: A Bibliometric Analysis," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(1), pages 3-27, January.
    4. Dong Lu & Ye Tian & Vincent Y. Liu & Yi Zhang, 2015. "The Performance of the Smart Cities in China—A Comparative Study by Means of Self-Organizing Maps and Social Networks Analysis," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    5. David Gibbs & Rob Krueger & Gordon MacLeod, 2013. "Grappling with Smart City Politics in an Era of Market Triumphalism," Urban Studies, Urban Studies Journal Limited, vol. 50(11), pages 2151-2157, August.
    6. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    7. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    8. Colin McFarlane & Ola Söderström, 2017. "On alternative smart cities," City, Taylor & Francis Journals, vol. 21(3-4), pages 312-328, July.
    9. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dezhi Li & Wentao Wang & Guanying Huang & Shenghua Zhou & Shiyao Zhu & Haibo Feng, 2023. "How to Enhance Citizens’ Sense of Gain in Smart Cities? A SWOT-AHP-TOWS Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(3), pages 787-820, February.
    2. Aldona Podgórniak-Krzykacz & Justyna Przywojska & Justyna Wiktorowicz, 2020. "Smart and Age-Friendly Communities in Poland. An Analysis of Institutional and Individual Conditions for a New Concept of Smart Development of Ageing Communities," Energies, MDPI, vol. 13(9), pages 1-23, May.
    3. Jiangyuan Fu & Huidan Xue & Fayuan Wang & Liming Wang, 2023. "The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    4. Tan Yigitcanlar & Hoon Han & Md. Kamruzzaman, 2019. "Approaches, Advances, and Applications in the Sustainable Development of Smart Cities: A Commentary from the Guest Editors," Energies, MDPI, vol. 12(23), pages 1-11, November.
    5. Sheng Zhang & Meng Xu & Yifu Yang & Zeyu Song, 2021. "Technological Innovation, Production Efficiency, and Sustainable Development: A Case Study from Shenzhen in China," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
    6. Filiou, Despoina & Kesidou, Effie & Wu, Lichao, 2023. "Are smart cities green? The role of environmental and digital policies for Eco-innovation in China," World Development, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LEBRUMENT, Norbert & ZUMBO-LEBRUMENT, Cédrine & ROCHETTE, Corinne & ROULET, Thomas J., 2021. "Triggering participation in smart cities: Political efficacy, public administration satisfaction and sense of belonging as drivers of citizens’ intention," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    3. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    4. Munan Li, 2019. "Visualizing the studies on smart cities in the past two decades: a two-dimensional perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 683-705, August.
    5. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    6. Ben Zhang & Lei Ma & Zheng Liu, 2020. "Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    7. Mu, Rui & Haershan, Maidina & Wu, Peiyi, 2022. "What organizational conditions, in combination, drive technology enactment in government-led smart city projects?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    8. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    9. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    10. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    11. Kusumastuti, Ratih Dyah & Nurmala, N. & Rouli, Juliana & Herdiansyah, Herdis, 2022. "Analyzing the factors that influence the seeking and sharing of information on the smart city digital platform: Empirical evidence from Indonesia," Technology in Society, Elsevier, vol. 68(C).
    12. Fang Zhao & Catherine Prentice & Joseph Wallis & Arvind Patel & Marie-France Waxin, 2020. "An integrative study of the implications of the rise of coworking spaces in smart cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 467-486, December.
    13. Nicos Komninos & Christina Kakderi & Luca Mora & Anastasia Panori & Elena Sefertzi, 2022. "Towards High Impact Smart Cities: a Universal Architecture Based on Connected Intelligence Spaces," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1169-1197, June.
    14. Adalberto Santos-Júnior & Fernando Almeida-García & Paulo Morgado & Luiz Mendes-Filho, 2020. "Residents’ Quality of Life in Smart Tourism Destinations: A Theoretical Approach," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    15. Alberto Ferraris & Gabriele Santoro & Anna Claudia Pellicelli, 2020. "“Openness” of public governments in smart cities: removing the barriers for innovation and entrepreneurship," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1259-1280, December.
    16. Joanna Wyrwa & Magdalena ZaraÅ› & Katarzyna Wolak, 2021. "Smart Solutions in Cities during the Covid-19 Pandemic," Virtual Economics, The London Academy of Science and Business, vol. 4(2), pages 88-103, April.
    17. Clement, Dr. Jessica & Crutzen, Prof. Nathalie, 2021. "How Local Policy Priorities Set the Smart City Agenda," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    18. Eusebio Scornavacca & Francesco Paolone & Stefano Za & Laura Martiniello, 2020. "Investigating the entrepreneurial perspective in smart city studies," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1197-1223, December.
    19. Sam Preston & Muhammad Usman Mazhar & Richard Bull, 2020. "Citizen Engagement for Co-Creating Low Carbon Smart Cities: Practical Lessons from Nottingham City Council in the UK," Energies, MDPI, vol. 13(24), pages 1-21, December.
    20. Thays A. Oliveira & Miquel Oliver & Helena Ramalhinho, 2020. "Challenges for Connecting Citizens and Smart Cities: ICT, E-Governance and Blockchain," Sustainability, MDPI, vol. 12(7), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4375-:d:287936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.