IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4479-d258795.html
   My bibliography  Save this article

AI-Based Physical and Virtual Platform with 5-Layered Architecture for Sustainable Smart Energy City Development

Author

Listed:
  • Sanguk Park

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Sanghoon Lee

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Sangmin Park

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Sehyun Park

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea)

Abstract

To build sustainable smart energy cities (SECs) around the world, many countries are now combining customized services and businesses within their energy infrastructure and urban environments. Such changes could then promote the development of platforms that ultimately provide benefits for citizens such as convenience, safety, and cost savings. Currently, the development of technologies for SECs focuses on independent products and unit technology. However, this is problematic, as it may not be possible to develop sustainable cities if there is a lack of connectivity between various elements within the SEC. To solve such problems, this paper presents an AI-based physical and virtual platform using a 5-layer architecture to develop a sustainable smart energy city (SSEC). The architecture employs both a top-down and bottom-up approach and the links between each energy element in the SSEC can readily be analyzed. The economic analysis based on return on investment (ROI) is carried out by comparing the economic benefits before and after the application of this system. Deploying the proposed platform will enable the speedy development and application of new services for SSECs and will provide SSECs with measures to ensure sustainable development, such as rapid urban development, and cost reductions.

Suggested Citation

  • Sanguk Park & Sanghoon Lee & Sangmin Park & Sehyun Park, 2019. "AI-Based Physical and Virtual Platform with 5-Layered Architecture for Sustainable Smart Energy City Development," Sustainability, MDPI, vol. 11(16), pages 1-30, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4479-:d:258795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    2. Ayd{i}n Alptekinou{g}lu & Charles J. Corbett, 2008. "Mass Customization vs. Mass Production: Variety and Price Competition," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 204-217, August.
    3. Simon Pezzutto & Matteo De Felice & Reza Fazeli & Lukas Kranzl & Stefano Zambotti, 2017. "Status Quo of the Air-Conditioning Market in Europe: Assessment of the Building Stock," Energies, MDPI, vol. 10(9), pages 1-17, August.
    4. Simon Pezzutto & Reza Fazeli & Matteo De Felice & Wolfram Sparber, 2016. "Future development of the air-conditioning market in Europe: an outlook until 2020," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 649-669, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehab Shahat & Chang T. Hyun & Chunho Yeom, 2021. "City Digital Twin Potentials: A Review and Research Agenda," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    2. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    3. Kristof Banyai & Laszlo Kovacs, 2023. "Identification of influence of digital twin technologies on production systems: a return on investment-based approach," Eastern-European Journal of Enterprise Technologies, PC TECHNOLOGY CENTER, vol. 4(13 (124)), pages 66-78, August.
    4. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Mateusz Tomal, 2020. "Moving towards a Smarter Housing Market: The Example of Poland," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    6. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    7. Rasa Apanaviciene & Andrius Vanagas & Paris A. Fokaides, 2020. "Smart Building Integration into a Smart City (SBISC): Development of a New Evaluation Framework," Energies, MDPI, vol. 13(9), pages 1-19, May.
    8. Qi Zhang & Hongyang Li & Xin Wan & Martin Skitmore & Hailin Sun, 2020. "An Intelligent Waste Removal System for Smarter Communities," Sustainability, MDPI, vol. 12(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2022. "Space Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    2. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Eric Wilczynski, 2022. "Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    3. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    4. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2023. "Process Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    6. Nan Xia & S. Rajagopalan, 2009. "Standard vs. Custom Products: Variety, Lead Time, and Price Competition," Marketing Science, INFORMS, vol. 28(5), pages 887-900, 09-10.
    7. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    8. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    10. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    11. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    12. Cabeza, Luisa F. & Ürge-Vorsatz, Diana & Palacios, Anabel & Ürge, Daniel & Serrano, Susana & Barreneche, Camila, 2018. "Trends in penetration and ownership of household appliances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4044-4059.
    13. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    14. Aoki, Reiko & Hillas, John & Kao, Tina, 2014. "Product Customization in the Spokes Model," CEI Working Paper Series 2014-8, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    15. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    16. Braungardt, Sibylle & Bürger, Veit & Zieger, Jana & Bosselaar, Lex, 2019. "How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 260-267.
    17. He, Bo & Mirchandani, Prakash & Yang, Guang, 2023. "Offering custom products using a C2M model: Collaborating with an E-commerce platform," International Journal of Production Economics, Elsevier, vol. 262(C).
    18. repec:umc:wpaper:0814 is not listed on IDEAS
    19. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    20. Peidong Sang & Jinjian Liu & Lin Zhang & Lingqiao Zheng & Haona Yao & Yanjie Wang, 2018. "Effects of Project Manager Competency on Green Construction Performance: The Chinese Context," Sustainability, MDPI, vol. 10(10), pages 1-17, September.
    21. Li Chen & Yao Cui & Hau L. Lee, 2021. "Retailing with 3D Printing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 1986-2007, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4479-:d:258795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.