IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2540-d359218.html
   My bibliography  Save this article

Modular Isolated DC-DC Converters for Ultra-Fast EV Chargers: A Generalized Modeling and Control Approach

Author

Listed:
  • Mena ElMenshawy

    (Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

  • Ahmed Massoud

    (Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

Abstract

Electric Vehicles (EVs) play a significant role in the reduction of CO 2 emissions and other health-threatening air pollutants Accordingly, several research studies are introduced owing to replacing conventional gasoline-powered vehicles with battery-powered EVs. However, the ultra-fast charging (UFC) of the battery pack or the rapid recharging of the battery requires specific demands, including both: the EV battery and the influence on the power grid. In this regard, advanced power electronics technologies are emerging significantly to replace the currently existing gas station infrastructures with the EV charging stations to move from conventional charging (range of hours) to UFC (range of minutes). Among these power electronics conversion systems, the DC-DC conversion stage plays an essential role in supplying energy to the EV via charging the EV’s battery. Accordingly, this paper aims to present possible architectures of connecting multiple Dual Active Bridge (DAB) units as the DC-DC stage of the EV fast charger and study their Small-Signal Modeling (SSM) and their control scheme. These are, namely, Input-Series Output-Series (ISOS), Input-Series Output-Parallel (ISOP), Input-Parallel Output-Parallel (IPOP), and Input-Parallel Output-Series (IPOS). The control scheme for each system is studied through controlling the output filter inductor current such that the current profile is based on Reflex Charging (RC). The main contribution of this paper can be highlighted in providing generalized SSM as well as providing a generalized control approach for the Input-Series Input-Parallel Output-Series Output-Parallel (ISIP-OSOP) connection. The generalized model is verified with three different architectures. The control strategy for each architecture is studied to ensure equal power sharing, where simulation results are provided to elucidate the presented concept considering a three-module ISOS, IPOP, ISOP, and IPOS DC-DC converters.

Suggested Citation

  • Mena ElMenshawy & Ahmed Massoud, 2020. "Modular Isolated DC-DC Converters for Ultra-Fast EV Chargers: A Generalized Modeling and Control Approach," Energies, MDPI, vol. 13(10), pages 1-34, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2540-:d:359218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mena ElMenshawy & Ahmed Massoud, 2020. "Hybrid Multimodule DC-DC Converters for Ultrafast Electric Vehicle Chargers," Energies, MDPI, vol. 13(18), pages 1-28, September.
    2. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    3. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
    4. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    2. Berliner, Rosaria, 2018. "Drivers of Change in a World of Mobility Disruption: An Overview of Long Distance Travel, Shared Mobility, and Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt6r64v86z, Institute of Transportation Studies, UC Davis.
    3. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    4. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    5. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    6. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    7. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    8. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    9. Weiwei Sun & Xueli Zhang & Min Yuan & Zheng Zhang, 2023. "Complex Network Analysis of China National Standards for New Energy Vehicles," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    10. Koetse, Mark J. & Hoen, Anco, 2014. "Preferences for alternative fuel vehicles of company car drivers," Resource and Energy Economics, Elsevier, vol. 37(C), pages 279-301.
    11. Hasan-Basri, Bakti & Mohd Mustafa, Muzafarshah & Bakar, Normizan, 2019. "Are Malaysian Consumers Willing to Pay for Hybrid Cars’ Attributes?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(1), pages 121-134.
    12. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    13. Langford, Richard P. & Gillingham, Kenneth, 2023. "Quantifying the benefits of the introduction of the hybrid electric vehicle," International Journal of Industrial Organization, Elsevier, vol. 87(C).
    14. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    15. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    16. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    17. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    19. Zack Dorner & Daniel A. Brent & Anke Leroux, 2019. "Preferences for Intrinsically Risky Attributes," Land Economics, University of Wisconsin Press, vol. 95(4), pages 494-514.
    20. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2540-:d:359218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.