IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1550-d225584.html
   My bibliography  Save this article

Frequency Support of Smart Grid Using Fuzzy Logic-Based Controller for Wind Energy Systems

Author

Listed:
  • Marcelo Godoy Simões

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

  • Abdullah Bubshait

    (Electrical Engineering Department, King Faisal University, Alahsa 31982, Saudi Arabia)

Abstract

This paper proposes a fuzzy logic-based controller for a wind turbine system to provide frequency support for a smart grid. The designed controller is aimed to provide an appropriate dynamic droop rate depending on the local measurements of each wind turbine of a wind farm such as the maximum power available and the amount of power reserve. The designed fuzzy controller depends on the rate of change of frequency (ROCOF) at the point of common coupling (PCC). The main advantage of the proposed fuzzy controller is to provide frequency support by the wind turbine system connected to a smart grid. The dynamic rate of the controller is defined by the fuzzy sets considering the change in the grid’s frequency and the available reserve power. First, the response of static droop curves is investigated for different scenarios of wind turbines connected to a smart grid. Then, the proposed fuzzy logic-based droop controller is integrated into the system, and its performance and response are evaluated, and the results are compared with static-droop based controller. The proposed controller is tested using Matlab\Simulink.

Suggested Citation

  • Marcelo Godoy Simões & Abdullah Bubshait, 2019. "Frequency Support of Smart Grid Using Fuzzy Logic-Based Controller for Wind Energy Systems," Energies, MDPI, vol. 12(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1550-:d:225584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singarao, Venkatesh Yadav & Rao, Vittal S., 2016. "Frequency responsive services by wind generation resources in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1097-1108.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    3. El Mokadem, M. & Courtecuisse, V. & Saudemont, C. & Robyns, B. & Deuse, J., 2009. "Experimental study of variable speed wind generator contribution to primary frequency control," Renewable Energy, Elsevier, vol. 34(3), pages 833-844.
    4. Camblong, H. & Nourdine, S. & Vechiu, I. & Tapia, G., 2012. "Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation," Energy, Elsevier, vol. 48(1), pages 284-291.
    5. Moutis, Panayiotis & Papathanassiou, Stavros A. & Hatziargyriou, Nikos D., 2012. "Improved load-frequency control contribution of variable speed variable pitch wind generators," Renewable Energy, Elsevier, vol. 48(C), pages 514-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Camblong, Haritza & Vechiu, Ionel & Guillaud, Xavier & Etxeberria, Aitor & Kreckelbergh, Stéphane, 2014. "Wind turbine controller comparison on an island grid in terms of frequency control and mechanical stress," Renewable Energy, Elsevier, vol. 63(C), pages 37-45.
    3. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    5. Deepak, M. & Abraham, Rajesh Joseph & Gonzalez-Longatt, Francisco M. & Greenwood, David M. & Rajamani, Haile-Selassie, 2017. "A novel approach to frequency support in a wind integrated power system," Renewable Energy, Elsevier, vol. 108(C), pages 194-206.
    6. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    8. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    9. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    11. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    12. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    13. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    14. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    15. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    16. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    18. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    19. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    20. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1550-:d:225584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.