IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p284-291.html
   My bibliography  Save this article

Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation

Author

Listed:
  • Camblong, H.
  • Nourdine, S.
  • Vechiu, I.
  • Tapia, G.

Abstract

The objectives of this work have been to design and analyze a discrete Linear Quadratic Gaussian (LQG) controller which contributes to the primary frequency control of the grid and to the reduction of the drive-train fatigue loads of a Wind Turbine (WT). The WT rotational speed and electrical power are controlled using the generator torque and the pitch angle as control variables. The rotational speed and electrical power references are generated in a higher control level depending on the wind speed and a frequency droop.

Suggested Citation

  • Camblong, H. & Nourdine, S. & Vechiu, I. & Tapia, G., 2012. "Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation," Energy, Elsevier, vol. 48(1), pages 284-291.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:284-291
    DOI: 10.1016/j.energy.2012.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200415X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    2. Möller, Bernd & Hong, Lixuan & Lonsing, Reinhard & Hvelplund, Frede, 2012. "Evaluation of offshore wind resources by scale of development," Energy, Elsevier, vol. 48(1), pages 314-322.
    3. González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Godoy Simões & Abdullah Bubshait, 2019. "Frequency Support of Smart Grid Using Fuzzy Logic-Based Controller for Wind Energy Systems," Energies, MDPI, vol. 12(8), pages 1-15, April.
    2. Rekik, Mouna & Abdelkafi, Achraf & Krichen, Lotfi, 2015. "A micro-grid ensuring multi-objective control strategy of a power electrical system for quality improvement," Energy, Elsevier, vol. 88(C), pages 351-363.
    3. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    4. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    5. Sahin, Mustafa & Yavrucuk, Ilkay, 2022. "Adaptive envelope protection control of wind turbines under varying operational conditions," Energy, Elsevier, vol. 247(C).
    6. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    7. Wakui, Tetsuya & Yoshimura, Motoki & Yokoyama, Ryohei, 2017. "Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system," Energy, Elsevier, vol. 141(C), pages 563-578.
    8. Camblong, Haritza & Vechiu, Ionel & Guillaud, Xavier & Etxeberria, Aitor & Kreckelbergh, Stéphane, 2014. "Wind turbine controller comparison on an island grid in terms of frequency control and mechanical stress," Renewable Energy, Elsevier, vol. 63(C), pages 37-45.
    9. Xingkang Jin & Wen Tan & Yarong Zou & Zijian Wang, 2022. "Active Disturbance Rejection Control for Wind Turbine Fatigue Load," Energies, MDPI, vol. 15(17), pages 1-15, August.
    10. Jeong, Min-Soo & Cha, Myung-Chan & Kim, Sang-Woo & Lee, In, 2015. "Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow," Energy, Elsevier, vol. 84(C), pages 518-532.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    2. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    3. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Hong, Lixuan & Möller, Bernd, 2012. "Feasibility study of China’s offshore wind target by 2020," Energy, Elsevier, vol. 48(1), pages 268-277.
    5. Cavazzi, S. & Dutton, A.G., 2016. "An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential," Renewable Energy, Elsevier, vol. 87(P1), pages 212-228.
    6. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    7. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    8. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    9. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    10. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    11. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    12. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    13. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    14. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    15. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    16. Davidson, Michael & Gunturu, Bhaskar & Zhang, Da & Zhang, Xiliang & Karplus, Valerie, 2013. "An Integrated Assessment of China’s Wind Energy Potential," Conference papers 332410, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Wei, Youzhou & Zou, Qing-Ping & Lin, Xianghong, 2021. "Evolution of price policy for offshore wind energy in China: Trilemma of capacity, price and subsidy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    18. Camblong, Haritza & Vechiu, Ionel & Guillaud, Xavier & Etxeberria, Aitor & Kreckelbergh, Stéphane, 2014. "Wind turbine controller comparison on an island grid in terms of frequency control and mechanical stress," Renewable Energy, Elsevier, vol. 63(C), pages 37-45.
    19. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    20. Li, Delei & Geyer, Beate & Bisling, Peter, 2016. "A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea," Applied Energy, Elsevier, vol. 179(C), pages 575-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:284-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.