IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332410.html
   My bibliography  Save this paper

An Integrated Assessment of China’s Wind Energy Potential

Author

Listed:
  • Davidson, Michael
  • Gunturu, Bhaskar
  • Zhang, Da
  • Zhang, Xiliang
  • Karplus, Valerie

Abstract

Computable general equilibrium (CGE) models seeking to evaluate the impacts of electricity policy face difficulties incorporating detail on the variable nature of renewable energy resources. To improve the accuracy of modeling renewable energy and climate policies, detailed scientific and engineering data are used to inform the parameterization of wind electricity in a new regional CGE model of China. Wind power density (WPD) in China has been constructed using boundary layer flux data from the Modern Era Retrospective-analysis for Research and Applications (MERRA) dataset with a 0.5° latitude by 0.67° longitude spatial resolution. Wind resource data are used to generate production cost functions for wind at the provincial level and offshore, incorporating technological parameters and geographical constraints. With these updated wind production cost data to parameterize the wind electricity option in a CGE model, an illustrative policy analysis of the current feed-in tariff (FIT) for wind electricity is performed . Assuming a generous penetration rate and no interprovincial interconnection, we find that the contribution of wind to total electricity generation is 213 TWh, reducing CO2 emissions by 3.5%. We discuss the relative merits of the FIT by province. Our analysis shows how wind electricity resource can be differentiated based on location and quality in a CGE model and applied to a analyze climate and energy policies.

Suggested Citation

  • Davidson, Michael & Gunturu, Bhaskar & Zhang, Da & Zhang, Xiliang & Karplus, Valerie, 2013. "An Integrated Assessment of China’s Wind Energy Potential," Conference papers 332410, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332410
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332410/files/6647.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    2. Liu, Yingqi & Kokko, Ari, 2010. "Wind power in China: Policy and development challenges," Energy Policy, Elsevier, vol. 38(10), pages 5520-5529, October.
    3. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    4. Schuman, Sara & Lin, Alvin, 2012. "China's Renewable Energy Law and its impact on renewable power in China: Progress, challenges and recommendations for improving implementation," Energy Policy, Elsevier, vol. 51(C), pages 89-109.
    5. Zhang, Da & Rausch, Sebastian & Karplus, Valerie J. & Zhang, Xiliang, 2013. "Quantifying regional economic impacts of CO2 intensity targets in China," Energy Economics, Elsevier, vol. 40(C), pages 687-701.
    6. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    7. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    8. Porter, Kevin & Yen-Nakafuji, Dora & Morgenstern, Brett, 2007. "A Review of the International Experience with Integrating Wind Energy Generation," The Electricity Journal, Elsevier, vol. 20(8), pages 48-59, October.
    9. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    10. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    2. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    3. Zhang, Da & Rausch, Sebastian & Karplus, Valerie J. & Zhang, Xiliang, 2013. "Quantifying regional economic impacts of CO2 intensity targets in China," Energy Economics, Elsevier, vol. 40(C), pages 687-701.
    4. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    5. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    6. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    7. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    8. Dong, Huijuan & Dai, Hancheng & Geng, Yong & Fujita, Tsuyoshi & Liu, Zhe & Xie, Yang & Wu, Rui & Fujii, Minoru & Masui, Toshihiko & Tang, Liang, 2017. "Exploring impact of carbon tax on China’s CO2 reductions and provincial disparities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 596-603.
    9. Liu, Zhiqing & Geng, Yong & Dai, Hancheng & Wilson, Jeffrey & Xie, Yang & Wu, Rui & You, Wei & Yu, Zhongjue, 2018. "Regional impacts of launching national carbon emissions trading market: A case study of Shanghai," Applied Energy, Elsevier, vol. 230(C), pages 232-240.
    10. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    11. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    12. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    13. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    14. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    15. Wei, Youzhou & Zou, Qing-Ping & Lin, Xianghong, 2021. "Evolution of price policy for offshore wind energy in China: Trilemma of capacity, price and subsidy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Mahmood, Arshad & Marpaung, Charles O.P., 2014. "Carbon pricing and energy efficiency improvement -- why to miss the interaction for developing economies? An illustrative CGE based application to the Pakistan case," Energy Policy, Elsevier, vol. 67(C), pages 87-103.
    17. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.
    18. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
    19. Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.
    20. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.