IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p389-d200988.html
   My bibliography  Save this article

Energy System Transitions in the Eastern Coastal Metropolitan Regions of China—The Role of Regional Policy Plans

Author

Listed:
  • Mengzhu Xiao

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

  • Sonja Simon

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

  • Thomas Pregger

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

Abstract

With an expected accelerated urbanization process until 2050, China is facing big challenges of mitigating CO 2 emissions, especially in the eastern coastal metropolitan regions. Since cities are the hubs for innovation regarding new technologies and infrastructures, investments and governance, they are playing an important role in decision-making and implementation processes on the way to a decarbonized economy and society. The national and provincial administrations in China have already started to address the issue of energy system transition toward a low-carbon pathway, but long-term integrated transition plans are not yet available on a regional level. In our paper, we therefore consider the main challenges of the energy system transition, such as efficiency improvement, coal reduction, decarbonization of transport, and multisector electrification with regional integration, focusing on two eastern coastal metropolitan regions of China. A systematic review of current near-term policies reveals how far these challenges have already been addressed on different administrative levels and which gaps may exist from an external perspective. Based on the current decision- and policy-making processes among national, regional, provincial and municipal levels, policy implications are identified with regard to an effective energy system transition in eastern China.

Suggested Citation

  • Mengzhu Xiao & Sonja Simon & Thomas Pregger, 2019. "Energy System Transitions in the Eastern Coastal Metropolitan Regions of China—The Role of Regional Policy Plans," Energies, MDPI, vol. 12(3), pages 1-30, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:389-:d:200988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Fagerberg & Staffan Laestadius & Ben R. Martin, 2016. "The Triple Challenge for Europe: The Economy, Climate Change, and Governance," Challenge, Taylor & Francis Journals, vol. 59(3), pages 178-204, May.
    2. Thomas L Muinzer & Geraint Ellis, 2017. "Subnational governance for the low carbon energy transition: Mapping the UK’s ‘Energy Constitution’," Environment and Planning C, , vol. 35(7), pages 1176-1197, November.
    3. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Zhang, Xiliang, 2016. "Case study of the constraints and potential contributions regarding wind curtailment in Northeast China," Energy, Elsevier, vol. 110(C), pages 55-64.
    4. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    5. Peidong, Zhang & Yanli, Yang & jin, Shi & Yonghong, Zheng & Lisheng, Wang & Xinrong, Li, 2009. "Opportunities and challenges for renewable energy policy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 439-449, February.
    6. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    7. Zhao, Guangling & Guerrero, Josep M. & Jiang, Kejun & Chen, Sha, 2017. "Energy modelling towards low carbon development of Beijing in 2030," Energy, Elsevier, vol. 121(C), pages 107-113.
    8. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    9. Wang, Can & Ye, Minhua & Cai, Wenjia & Chen, Jining, 2014. "The value of a clear, long-term climate policy agenda: A case study of China’s power sector using a multi-region optimization model," Applied Energy, Elsevier, vol. 125(C), pages 276-288.
    10. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    11. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    12. Topi, Corrado & Esposto, Edoardo & Marini Govigli, Valentino, 2016. "The economics of green transition strategies for cities: Can low carbon, energy efficient development approaches be adapted to demand side urban water efficiency?," Environmental Science & Policy, Elsevier, vol. 58(C), pages 74-82.
    13. Lutz, Lotte Marie & Fischer, Lisa-Britt & Newig, Jens & Lang, Daniel Johannes, 2017. "Driving factors for the regional implementation of renewable energy ‐ A multiple case study on the German energy transition," Energy Policy, Elsevier, vol. 105(C), pages 136-147.
    14. Shum, Kwok L., 2017. "Renewable energy deployment policy: A transition management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1380-1388.
    15. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    16. Stephen Hall & Timothy J Foxon & Ronan Bolton, 2017. "Investing in low-carbon transitions: energy finance as an adaptive market," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 280-298, April.
    17. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    18. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    19. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    20. Dermont, Clau & Ingold, Karin & Kammermann, Lorenz & Stadelmann-Steffen, Isabelle, 2017. "Bringing the policy making perspective in: A political science approach to social acceptance," Energy Policy, Elsevier, vol. 108(C), pages 359-368.
    21. Zhao, Jing & Wang, Jianzhou & Su, Zhongyue, 2014. "Power generation and renewable potential in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 727-740.
    22. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    23. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    24. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    25. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengrong Jiang & Weijun Gao, 2021. "Impact of Enclosure Boundary Patterns and Lift-Up Design on Optimization of Summer Pedestrian Wind Environment in High-Density Residential Districts," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Giovanni Andrés Quintana-Pedraza & Sara Cristina Vieira-Agudelo & Nicolás Muñoz-Galeano, 2019. "A Cradle-to-Grave Multi-Pronged Methodology to Obtain the Carbon Footprint of Electro-Intensive Power Electronic Products," Energies, MDPI, vol. 12(17), pages 1-16, August.
    3. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    2. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    3. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    4. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    5. Niklas Wulff & Felix Steck & Hans Christian Gils & Carsten Hoyer-Klick & Bent van den Adel & John E. Anderson, 2020. "Comparing Power-System and User-Oriented Battery Electric Vehicle Charging Representation and Its Implications on Energy System Modeling," Energies, MDPI, vol. 13(5), pages 1-41, March.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    8. Li, Yuan & Zhou, You & Yi, Bo-Wen & Wang, Ya, 2021. "Impacts of the coal resource tax on the electric power industry in China: A multi-regional comprehensive analysis," Resources Policy, Elsevier, vol. 70(C).
    9. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    10. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    11. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    12. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    13. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    14. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    15. Mohamed Zaidan Qawaqzeh & Oleksandr Miroshnyk & Taras Shchur & Robert Kasner & Adam Idzikowski & Weronika Kruszelnicka & Andrzej Tomporowski & Patrycja Bałdowska-Witos & Józef Flizikowski & Marcin Zaw, 2021. "Research of Emergency Modes of Wind Power Plants Using Computer Simulation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    16. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    17. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    18. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    19. Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:389-:d:200988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.