IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2722-d248822.html
   My bibliography  Save this article

ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

Author

Listed:
  • Kai Heussen

    (Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark)

  • Cornelius Steinbrink

    (OFFIS—Institute for Information Technology, 26121 Oldenburg, Germany)

  • Ibrahim F. Abdulhadi

    (Institute for Energy and Environment, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

  • Van Hoa Nguyen

    (CEA, LITEN, Department of Solar Technologies INES, University Grenoble Alpes, F-73375 Le Bourget du Lac, France)

  • Merkebu Z. Degefa

    (SINTEF Energi AS, 7034 Trondheim, Norway)

  • Julia Merino

    (Tecnalia Research & Innovation, 48160 Derio, Spain)

  • Tue V. Jensen

    (Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark)

  • Hao Guo

    (Institute for Energy and Environment, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

  • Oliver Gehrke

    (Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark)

  • Daniel Esteban Morales Bondy

    (Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
    Vestas Wind Systems A/S, DK8200 Aarhus, Denmark)

  • Davood Babazadeh

    (OFFIS—Institute for Information Technology, 26121 Oldenburg, Germany)

  • Filip Pröstl Andrén

    (AIT Austrian Institute for Technology—Electric Energy Systems, Center for Energy, 1210 Vienna, Austria)

  • Thomas I. Strasser

    (AIT Austrian Institute for Technology—Electric Energy Systems, Center for Energy, 1210 Vienna, Austria)

Abstract

Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.

Suggested Citation

  • Kai Heussen & Cornelius Steinbrink & Ibrahim F. Abdulhadi & Van Hoa Nguyen & Merkebu Z. Degefa & Julia Merino & Tue V. Jensen & Hao Guo & Oliver Gehrke & Daniel Esteban Morales Bondy & Davood Babazade, 2019. "ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems," Energies, MDPI, vol. 12(14), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2722-:d:248822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias Uslar & Sebastian Rohjans & Christian Neureiter & Filip Pröstl Andrén & Jorge Velasquez & Cornelius Steinbrink & Venizelos Efthymiou & Gianluigi Migliavacca & Seppo Horsmanheimo & Helfried Bru, 2019. "Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective," Energies, MDPI, vol. 12(2), pages 1-40, January.
    2. Colak, Ilhami & Fulli, Gianluca & Sagiroglu, Seref & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2015. "Smart grid projects in Europe: Current status, maturity and future scenarios," Applied Energy, Elsevier, vol. 152(C), pages 58-70.
    3. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, September.
    4. Van Hoa Nguyen & Yvon Besanger & Quoc Tuan Tran & Tung Lam Nguyen, 2017. "On Conceptual Structuration and Coupling Methods of Co-Simulation Frameworks in Cyber-Physical Energy System Validation," Energies, MDPI, vol. 10(12), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael H. Spiegel & Eric M. S. P. Veith & Thomas I. Strasser, 2020. "The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review," Energies, MDPI, vol. 13(17), pages 1-37, September.
    2. Steffen Vogel & Ha Thi Nguyen & Marija Stevic & Tue Vissing Jensen & Kai Heussen & Vetrivel Subramaniam Rajkumar & Antonello Monti, 2020. "Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface," Energies, MDPI, vol. 13(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    2. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    6. Dellino, Gabriella & Kleijnen, Jack P.C. & Meloni, Carlo, 2010. "Robust optimization in simulation: Taguchi and Response Surface Methodology," International Journal of Production Economics, Elsevier, vol. 125(1), pages 52-59, May.
    7. Angun, M.E. & Kleijnen, Jack P.C., 2012. "An asymptotic test of optimality conditions in multiresponse simulation optimization," Other publications TiSEM a69dfa59-b0e1-45bd-8cd6-a, Tilburg University, School of Economics and Management.
    8. Jack P. C. Kleijnen, 2017. "Comment on Park et al.’s “Robust Kriging in computer experiments”," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 739-740, June.
    9. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.
    10. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    11. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    12. Kleijnen, Jack P.C. & Ridder, A.A.N. & Rubinstein, R.Y., 2010. "Variance Reduction Techniques in Monte Carlo Methods," Other publications TiSEM 87680d1a-53c1-4107-ada4-7, Tilburg University, School of Economics and Management.
    13. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    14. Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
    15. Doole, Graeme J. & Romera, Alvaro J., 2014. "Cost-effective regulation of nonpoint emissions from pastoral agriculture: a stochastic analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(3), July.
    16. IqtiyaniIlham, Nur & Hasanuzzaman, M. & Hosenuzzaman, M., 2017. "European smart grid prospects, policies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 776-790.
    17. Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Discussion Paper 2011-015, Tilburg University, Center for Economic Research.
    18. Kleijnen, J.P.C., 2008. "Design of Experiments : An Overview," Discussion Paper 2008-70, Tilburg University, Center for Economic Research.
    19. Kleijnen, Jack P.C. & Mehdad, E., 2013. "Conditional simulation for efficient global optimization," Other publications TiSEM 52e4860d-9887-4a63-b19a-7, Tilburg University, School of Economics and Management.
    20. Rodriguez-Calvo, Andrea & Cossent, Rafael & Frías, Pablo, 2018. "Scalability and replicability analysis of large-scale smart grid implementations: Approaches and proposals in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2722-:d:248822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.