IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4543-d407741.html
   My bibliography  Save this article

The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review

Author

Listed:
  • Michael H. Spiegel

    (Electric Energy Systems—Center for Energy, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

  • Eric M. S. P. Veith

    (Competence Cluster Applied Artificial Intelligence, R&D Group Power Systems Intelligence, OFFIS–Institute for Information Technology, 26121 Oldenburg, Germany)

  • Thomas I. Strasser

    (Electric Energy Systems—Center for Energy, AIT Austrian Institute of Technology, 1210 Vienna, Austria
    Institute of Mechanics and Mechatronics, Faculty of Mechanical and Industrial Engineering, TU Wien, 1060 Vienna, Austria)

Abstract

Multi-microgrids address the need for a resilient, sustainable, and cost-effective electricity supply by providing a coordinated operation of individual networks. Due to local generation, dynamic network topologies, and islanding capabilities of hosted microgrids or groups thereof, various new fault mitigation and optimization options emerge. However, with the great flexibility, new challenges such as complex failure modes that need to be considered for a resilient operation, appear. This work systematically reviews scheduling approaches which significantly influence the feasibility of mitigation options before a failure is encountered. An in-depth analysis of identified key contributions covers aspects such as the mathematical apparatus, failure models and validation to highlight the current methodical spectrum and to identify future perspectives. Despite the common optimization-based framework, a broad variety of scheduling approaches is revealed. However, none of the key contributions provides practical insights beyond lab validation and considerable effort is required until the approaches can show their full potential in practical implementations. It is expected that the great level of detail guides further research in improving and validating existing scheduling concepts as well as it, in the long run, aids engineers to choose the most suitable options regarding increasingly resilient power systems.

Suggested Citation

  • Michael H. Spiegel & Eric M. S. P. Veith & Thomas I. Strasser, 2020. "The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review," Energies, MDPI, vol. 13(17), pages 1-37, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4543-:d:407741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    3. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    4. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    5. Feng, Wei & Jin, Ming & Liu, Xu & Bao, Yi & Marnay, Chris & Yao, Cheng & Yu, Jiancheng, 2018. "A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools," Applied Energy, Elsevier, vol. 228(C), pages 1656-1668.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    8. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    9. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    10. Arghandeh, Reza & von Meier, Alexandra & Mehrmanesh, Laura & Mili, Lamine, 2016. "On the definition of cyber-physical resilience in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1060-1069.
    11. Schimpe, Michael & Naumann, Maik & Truong, Nam & Hesse, Holger C. & Santhanagopalan, Shriram & Saxon, Aron & Jossen, Andreas, 2018. "Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis," Applied Energy, Elsevier, vol. 210(C), pages 211-229.
    12. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    13. Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
    14. Kai Heussen & Cornelius Steinbrink & Ibrahim F. Abdulhadi & Van Hoa Nguyen & Merkebu Z. Degefa & Julia Merino & Tue V. Jensen & Hao Guo & Oliver Gehrke & Daniel Esteban Morales Bondy & Davood Babazade, 2019. "ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems," Energies, MDPI, vol. 12(14), pages 1-31, July.
    15. Filip Pröstl Andrén & Thomas I. Strasser & Wolfgang Kastner, 2017. "Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment," Energies, MDPI, vol. 10(3), pages 1-33, March.
    16. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    17. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    18. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    19. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    20. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Lenhart, Stephanie & Araújo, Kathleen, 2021. "Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    6. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    7. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    8. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    9. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    10. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    12. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    13. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    16. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    17. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    18. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    19. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    20. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4543-:d:407741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.