IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1398-d149736.html
   My bibliography  Save this article

On the Heat Transfer Enhancement of Plate Fin Heat Exchanger

Author

Listed:
  • Yuan Xue

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Zhihua Ge

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Xiaoze Du

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Lijun Yang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

Abstract

The plate fin heat exchanger is a compact heat exchanger applied in many industries because of its high thermal performance. To enhance the heat transfer of plate fin heat exchanger further, three new kinds of wavy plate fins, namely perforated wavy fin, staggered wavy fin and discontinuous wavy fin, are proposed and investigated by computational fluid dynamics (CFD) simulations. The effects of key design parameters, including that of waviness aspect ratios, perforation diameters, staggered ratios and breaking distance are investigated, respectively, with Reynolds number changes from 500 to 4500. It is found that due to the swirl flow and efficient mixing of the fluid, the proposed heat transfer enhancement techniques all have advantages over the traditional wavy fin. At the same time, serration is beneficial to reduce the friction factor, and the breaking technique can reduce heat transfer area. Through the performance evaluation criteria, the staggered wavy fin has an advantage over the small waviness aspect ratio; with increasing waviness aspect ratio, this predominance is gradually surpassed by the perforated wavy fin, and the advantage of the discontinuous fin is the smallest and almost invariable. A maximum performance evaluation criteria (PEC) as high as 1.24 can be obtained for the perforated wavy fin at the waviness aspect ratio γ = 0.45.

Suggested Citation

  • Yuan Xue & Zhihua Ge & Xiaoze Du & Lijun Yang, 2018. "On the Heat Transfer Enhancement of Plate Fin Heat Exchanger," Energies, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1398-:d:149736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheik Ismail, L. & Velraj, R. & Ranganayakulu, C., 2010. "Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 478-485, January.
    2. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    3. Shaeri, M.R. & Yaghoubi, M. & Jafarpur, K., 2009. "Heat transfer analysis of lateral perforated fin heat sinks," Applied Energy, Elsevier, vol. 86(10), pages 2019-2029, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan Liu & Chen Yang & Junhui Zhang & Huaizhi Zong & Bing Xu & Jin-yuan Qian, 2020. "Internal Flow Analysis of a Heat Transfer Enhanced Tube with a Segmented Twisted Tape Insert," Energies, MDPI, vol. 13(1), pages 1-16, January.
    2. Xiang Peng & Denghong Li & Jiquan Li & Shaofei Jiang & Qilong Gao, 2020. "Improvement of Flow Distribution by New Inlet Header Configuration with Splitter Plates for Plate-Fin Heat Exchanger," Energies, MDPI, vol. 13(6), pages 1-14, March.
    3. Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
    4. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
    6. Agung Tri Wijayanta & Pranowo & Mirmanto & Budi Kristiawan & Muhammad Aziz, 2019. "Internal Flow in an Enhanced Tube Having Square-cut Twisted Tape Insert," Energies, MDPI, vol. 12(2), pages 1-12, January.
    7. Agung Tri Wijayanta & Muhammad Aziz & Keishi Kariya & Akio Miyara, 2018. "Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert," Energies, MDPI, vol. 11(11), pages 1-15, November.
    8. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    9. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhammad Niazi & Muhammad Irfan & Adam Glowacz, 2020. "Predicting the Structural Reliability of LNG Processing Plate-Fin Heat Exchanger for Energy Conservation," Energies, MDPI, vol. 13(9), pages 1-22, May.
    10. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaoliang Liao & Zhizhou Li & Feng Zhang & Lijun Liu & Jiaqiang E, 2021. "A Review on the Thermal-Hydraulic Performance and Optimization of Compact Heat Exchangers," Energies, MDPI, vol. 14(19), pages 1-35, September.
    2. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    3. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    4. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    5. Ismail, Md. Farhad & Hasan, Muhammad Noman & Saha, Suvash C., 2014. "Numerical study of turbulent fluid flow and heat transfer in lateral perforated extended surfaces," Energy, Elsevier, vol. 64(C), pages 632-639.
    6. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    7. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    8. Yerzhan Asem Anuarkyzy & Marat B. Koshumbaev, 2016. "New Design of Low-Head Hydro Turbine for Small-Scale Hydropower Plant," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 2(3), pages 87-94.
    9. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    10. Shahsavar, Amin & Majidzadeh, Amir Hossein & Mahani, Roohollah Babaei & Talebizadehsardari, Pouyan, 2021. "Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger," Renewable Energy, Elsevier, vol. 165(P2), pages 52-72.
    11. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    12. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    13. Fabio Battaglia & Martinus Arie & Xiang Zhang & Michael Ohadi & Amir Shooshtari, 2023. "Experimental Characterization of an Additively Manufactured Inconel 718 Heat Exchanger for High-Temperature Applications," Energies, MDPI, vol. 16(10), pages 1-20, May.
    14. Zuoqin Qian & Qiang Wang & Song Lv, 2020. "Research on the Thermal Hydraulic Performance and Entropy Generation Characteristics of Finned Tube Heat Exchanger with Streamline Tube," Energies, MDPI, vol. 13(20), pages 1-28, October.
    15. Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
    16. R. S. Varun Kumar & M. D. Alsulami & I. E. Sarris & G. Sowmya & Fehmi Gamaoun, 2023. "Stochastic Levenberg–Marquardt Neural Network Implementation for Analyzing the Convective Heat Transfer in a Wavy Fin," Mathematics, MDPI, vol. 11(10), pages 1-26, May.
    17. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Novel predictive tools for design of radiant and convective sections of direct fired heaters," Applied Energy, Elsevier, vol. 87(7), pages 2194-2202, July.
    18. Li, Qi & Flamant, Gilles & Yuan, Xigang & Neveu, Pierre & Luo, Lingai, 2011. "Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4855-4875.
    19. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    20. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1398-:d:149736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.