IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v13y2025i3p68-d1607138.html
   My bibliography  Save this article

Maximum Trimmed Likelihood Estimation for Discrete Multivariate Vasicek Processes

Author

Listed:
  • Thomas M. Fullerton

    (Department of Economics and Finance, The University of Texas at El Paso, El Paso, TX 79968, USA)

  • Michael Pokojovy

    (Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA)

  • Andrews T. Anum

    (Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA)

  • Ebenezer Nkum

    (Cigna Healthcare, Nashville, TN 37228, USA)

Abstract

The multivariate Vasicek model is commonly used to capture mean-reverting dynamics typical for short rates, asset price stochastic log-volatilities, etc. Reparametrizing the discretized problem as a VAR(1) model, the parameters are oftentimes estimated using the multivariate least squares (MLS) method, which can be susceptible to outliers. To account for potential model violations, a maximum trimmed likelihood estimation (MTLE) approach is utilized to derive a system of nonlinear estimating equations, and an iterative procedure is developed to solve the latter. In addition to robustness, our new technique allows for reliable recovery of the long-term mean, unlike existing methodologies. A set of simulation studies across multiple dimensions, sample sizes and robustness configurations are performed. MTLE outcomes are compared to those of multivariate least trimmed squares (MLTS), MLE and MLS. Empirical results suggest that MTLE not only maintains good relative efficiency for uncontaminated data but significantly improves overall estimation quality in the presence of data irregularities. Additionally, real data examples containing daily log-volatilities of six common assets (commodities and currencies) and US/Euro short rates are also analyzed. The results indicate that MTLE provides an attractive instrument for interest rate forecasting, stochastic volatility modeling, risk management and other applications requiring statistical robustness in complex economic and financial environments.

Suggested Citation

  • Thomas M. Fullerton & Michael Pokojovy & Andrews T. Anum & Ebenezer Nkum, 2025. "Maximum Trimmed Likelihood Estimation for Discrete Multivariate Vasicek Processes," Economies, MDPI, vol. 13(3), pages 1-28, March.
  • Handle: RePEc:gam:jecomi:v:13:y:2025:i:3:p:68-:d:1607138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/13/3/68/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/13/3/68/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    2. Le Chang & Yanlin Shi, 2024. "A discussion on the robust vector autoregressive models: novel evidence from safe haven assets," Annals of Operations Research, Springer, vol. 339(3), pages 1725-1755, August.
    3. Yijun Zuo, 2024. "Large Sample Behavior of the Least Trimmed Squares Estimator," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Ishaq Adeyanju Raji & Nasir Abbas & Mu’azu Ramat Abujiya & Muhammad Riaz, 2021. "Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection," Mathematics, MDPI, vol. 9(21), pages 1-15, November.
    6. Egorov, Alexei V. & Li, Haitao & Ng, David, 2011. "A tale of two yield curves: Modeling the joint term structure of dollar and euro interest rates," Journal of Econometrics, Elsevier, vol. 162(1), pages 55-70, May.
    7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    8. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    9. Eraker, Bjørn, 2008. "A Bayesian view of temporary components in asset prices," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 503-517, June.
    10. Korn, Olaf & Koziol, Christian, 2006. "Bond portfolio optimization: A risk-return approach," CFR Working Papers 06-03, University of Cologne, Centre for Financial Research (CFR).
    11. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524.
    2. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    3. Hurn, A.S. & Lindsay, K.A., 1999. "Estimating the parameters of stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 373-384.
    4. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    6. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    7. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    8. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    9. P. Xidonas & C. Hassapis & G. Bouzianis & C. Staikouras, 2018. "An Integrated Matching-Immunization Model for Bond Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 595-605, March.
    10. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    11. Eric Hillebrand, 2003. "The Effects of Japanese Foreign Exchange Intervention: GARCH Estimation and Change Point Detection," Departmental Working Papers 2003-10, Department of Economics, Louisiana State University.
    12. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    13. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    14. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    15. Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.
    16. Zi‐Yi Guo, 2021. "Out‐of‐sample performance of bias‐corrected estimators for diffusion processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 243-268, March.
    17. Seungmoon Choi, 2011. "Closed-Form Likelihood Expansions for Multivariate Time-Inhomogeneous Diffusions," School of Economics and Public Policy Working Papers 2011-26, University of Adelaide, School of Economics and Public Policy.
    18. Monica Gentile & Roberto Renò, 2005. "Specification Analysis of Diffusion Models for the Italian Short Rate," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(1), pages 51-83, February.
    19. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    20. Konstantinos Bisiotis & Stelios Psarakis & Athanasios N. Yannacopoulos, 2022. "Affine Term Structure Models: Applications in Portfolio Optimization and Change Point Detection," Mathematics, MDPI, vol. 10(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:13:y:2025:i:3:p:68-:d:1607138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.