IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v189y2015i2p473-484.html
   My bibliography  Save this article

Quasi-likelihood estimation of a threshold diffusion process

Author

Listed:
  • Su, Fei
  • Chan, Kung-Sik

Abstract

The threshold diffusion process, first introduced by Tong (1990), is a continuous-time process satisfying a stochastic differential equation with a piecewise linear drift term and a piecewise smooth diffusion term, e.g., a piecewise constant function or a piecewise power function. We consider the problem of estimating the (drift) parameters indexing the drift term of a threshold diffusion process with continuous-time observations. Maximum likelihood estimation of the drift parameters requires prior knowledge of the functional form of the diffusion term, which is, however, often unavailable. We propose a quasi-likelihood approach for estimating the drift parameters of a two-regime threshold diffusion process that does not require prior knowledge about the functional form of the diffusion term. We show that, under mild regularity conditions, the quasi-likelihood estimators of the drift parameters are consistent. Moreover, the estimator of the threshold parameter is super consistent and weakly converges to some non-Gaussian continuous distribution. Also, the estimators of the autoregressive parameters in the drift term are jointly asymptotically normal with distribution the same as that when the threshold parameter is known. The empirical properties of the quasi-likelihood estimator are studied by simulation. We apply the threshold model to estimate the term structure of a long time series of US interest rates. The proposed approach and asymptotic results can be readily lifted to the case of a multi-regime threshold diffusion process.

Suggested Citation

  • Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
  • Handle: RePEc:eee:econom:v:189:y:2015:i:2:p:473-484
    DOI: 10.1016/j.jeconom.2015.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615001165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2015.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    2. Coakley, Jerry & Fuertes, Ana-Maria & Perez, Maria-Teresa, 2003. "Numerical issues in threshold autoregressive modeling of time series," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2219-2242, September.
    3. Brockwell, P. J. & Hyndman, R. J., 1992. "On continuous-time threshold autoregression," International Journal of Forecasting, Elsevier, vol. 8(2), pages 157-173, October.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. O. Stramer & G. O. Roberts, 2007. "On Bayesian analysis of nonlinear continuous‐time autoregression models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 744-762, September.
    6. Yury Kutoyants, 2012. "On identification of the threshold diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 383-413, April.
    7. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    8. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    11. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    12. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    13. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    14. J. van Zanten, 2000. "On the Uniform Convergence of the Empirical Density of an Ergodic Diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 251-262, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhenwen & Xi, Yuejuan, 2021. "The first passage time on the (reflected) Brownian motion with broken drift hitting a random boundary," Statistics & Probability Letters, Elsevier, vol. 171(C).
    2. Ling, Shiqing & McAleer, Michael & Tong, Howell, 2015. "Frontiers in Time Series and Financial Econometrics: An overview," Journal of Econometrics, Elsevier, vol. 189(2), pages 245-250.
    3. Yizhou Bai & Yongjin Wang & Haoyan Zhang & Xiaoyang Zhuo, 2022. "Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 479-527, August.
    4. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    6. Kung-Sik Chan & Simone Giannerini & Greta Goracci & Howell Tong, 2020. "Testing for threshold regulation in presence of measurement error with an application to the PPP hypothesis," Papers 2002.09968, arXiv.org, revised Nov 2021.
    7. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    8. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    2. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    3. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    4. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    5. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.
    6. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    7. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    8. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    9. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    11. repec:wyi:journl:002108 is not listed on IDEAS
    12. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    13. Monica Gentile & Roberto Renò, 2005. "Specification Analysis of Diffusion Models for the Italian Short Rate," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(1), pages 51-83, February.
    14. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    15. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    16. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    17. Mikkelsen, Peter, 2003. "Estimating intractable non-linear term structure models," Finance Working Papers 02-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    18. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    19. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    20. Kristensen, Dennis, 2004. "A semiparametric single-factor model of the term structure," LSE Research Online Documents on Economics 24741, London School of Economics and Political Science, LSE Library.
    21. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Keywords

    Girsanov’s theorem; Interest rates; Nonlinear time series; Stochastic differential equation; Term structure;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:189:y:2015:i:2:p:473-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.