IDEAS home Printed from
   My bibliography  Save this article

On continuous-time threshold autoregression


  • Brockwell, P. J.
  • Hyndman, R. J.


No abstract is available for this item.

Suggested Citation

  • Brockwell, P. J. & Hyndman, R. J., 1992. "On continuous-time threshold autoregression," International Journal of Forecasting, Elsevier, vol. 8(2), pages 157-173, October.
  • Handle: RePEc:eee:intfor:v:8:y:1992:i:2:p:157-173

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. J-P.Guironnet, 2006. "Analyse cliométrique des cycles de croissance de l'éducation en France (1815-2003): vers un modèle à seuil autorégressif," Economies et Sociétés (Serie 'Histoire Economique Quantitative'), Association Française de Cliométrie (AFC), issue 34, pages 193-214, February.
    2. P. Brockwell & O. Stramer, 1995. "On the approximation of continuous time threshold ARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 1-20, January.
    3. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    4. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    5. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    6. Chan, K. S. & Stramer, O., 1998. "Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 33-44, August.
    7. repec:eee:ecomod:v:255:y:2013:i:c:p:29-37 is not listed on IDEAS
    8. Siu, Tak Kuen, 2016. "A self-exciting threshold jump–diffusion model for option valuation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 168-193.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:8:y:1992:i:2:p:157-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.