IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1591-d1477047.html
   My bibliography  Save this article

Genotype by Environment Interaction (GEI) Effect for Potato Tuber Yield and Their Quality Traits in Organic Multi-Environment Domains in Poland

Author

Listed:
  • Beata Ewa Tatarowska

    (Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Młochów Division, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland)

  • Jarosław Plich

    (Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Młochów Division, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland)

  • Dorota Milczarek

    (Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Młochów Division, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland)

  • Dominika Boguszewska-Mańkowska

    (Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Jadwisin Division, Department of Potato Agronomy, Szaniawskiego Str. 15, 05-140 Serock, Poland)

  • Krystyna Zarzyńska

    (Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Jadwisin Division, Department of Potato Agronomy, Szaniawskiego Str. 15, 05-140 Serock, Poland)

Abstract

Potatoes ( Solanum tuberosum L.) are an important plant crop, whose yield may vary significantly depending on pedo-climatic conditions and genotype. Therefore, the analysis of the genotype × environment interaction (GEI) is mandatory for the setup of high-yielding and stable potato genotypes. This research evaluated the tuber yield (t ha −1 ) and yield characteristic of nine potato cultivars over 3 years and 4 organic farms in Poland by additive main effects and multiplicative interactions (AMMIs) and genotype plus genotype environment interaction (GGE) biplot analyses. The results of these analyses indicated significant differentiation of tuber yield among genotypes in individual environments. It was found that the environment (E, where E = L (localization) × Y (year)), genotype (G) and GEI, but not replication, significantly affected tuber yield. The AMMI analysis showed that the environment factor explained the most considerable part of tuber yield variations (52.3%), while the GEI and G factors explained a much lower part of the variations. The AMMI and GGE analyses identified five cvs.: Twister (46.4 t ha −1 ), Alouette (35.8 t ha −1 ), Kokra (34.8 t ha −1 ), Levante (33.1 t ha −1 ), and Gardena (30.4 t ha −1 ), as leading cultivars in the studied organic farms due to their high productivity coupled with yield stability. The statistical measure Kang ( YS i ) showed that these cvs. can be considered as adaptable to a wide range of organic environments. In the case of morphological traits of tubers (tuber shape and depth of tuber eyes), the most important factor influencing both these traits was genotype (G). Influence of other factors, like localization (L), year (Y), and all interactions (double and triple), were much less significant or insignificant. In case of taste and non-darkening of tuber flesh, the main effects which significantly affected the values of these traits were genotype (G) and localization (L). We observed that cooking type can vary depending on the year (Y) and the localization (L).

Suggested Citation

  • Beata Ewa Tatarowska & Jarosław Plich & Dorota Milczarek & Dominika Boguszewska-Mańkowska & Krystyna Zarzyńska, 2024. "Genotype by Environment Interaction (GEI) Effect for Potato Tuber Yield and Their Quality Traits in Organic Multi-Environment Domains in Poland," Agriculture, MDPI, vol. 14(9), pages 1-13, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1591-:d:1477047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    3. Krystyna Zarzyńska & Cezary Trawczyński & Milena Pietraszko, 2023. "Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    2. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    3. Zuzana Fuksová & Iveta Bošková & Jana Hlaváčková & Marek Novák, 2025. "The economic aspects of organic farms selling their products to organic or conventional market," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 71(4), pages 218-227.
    4. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    5. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    6. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    7. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    8. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    9. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    10. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    11. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    12. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    13. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    14. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    15. Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    16. Tina L. Saitone & Richard J. Sexton, 2017. "Agri-food supply chain: evolution and performance with conflicting consumer and societal demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 634-657.
    17. Marek Zieliński & Wioletta Wrzaszcz & Jolanta Sobierajewska & Marcin Adamski, 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints," Agriculture, MDPI, vol. 14(2), pages 1-17, February.
    18. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    19. Fertő, Imre & Bakucs, Zoltán & Viira, Ants-Hannes & Aleksandrova, Olha & Luik-Lindsaar, Helis & Omel, Raul, 2024. "Are Organic Farms Less Efficient? The Case of Estonian Dairy Farms," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(4), March.
    20. Tshotsho, & Lippert, Christian & Zikeli, Sabine & Krimly, Tatjana & Barissoul, Ayoub & Feuerbacher, Arndt, 2024. "The role of management and farming practices, yield gaps, nutrient balance, and institutional settings in the context of large-scale organic conversion in Bhutan," Agricultural Systems, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1591-:d:1477047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.