IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v64y2018i4id768-2017-pse.html
   My bibliography  Save this article

Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems

Author

Listed:
  • Dapeng WANG

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China
    Rubber Research Institute, Chinese Academy of Tropical Agriculture Sciences,)

  • Liang ZHENG

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Songdong GU
  • Yuefeng SHI

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Long LIANG

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Fanqiao MENG

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Yanbin GUO

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Xiaotang JU

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

  • Wenliang WU

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China)

Abstract

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO3--N). This study evaluates grain yield, N and water consumption, NO3--N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO3--N leaching by 33, 35 and 67-74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO3--N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO3--N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO3--N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO3--N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.

Suggested Citation

  • Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
  • Handle: RePEc:caa:jnlpse:v:64:y:2018:i:4:id:768-2017-pse
    DOI: 10.17221/768/2017-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/768/2017-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/768/2017-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/768/2017-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iduna ARDUINI & Roberto CARDELLI & Silvia PAMPANA, 2018. "Biosolids affect the growth, nitrogen accumulation and nitrogen leaching of barley," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(3), pages 95-101.
    2. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    3. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    4. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    5. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    6. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    7. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Borsellino & Emanuele Schimmenti & Hamid El Bilali, 2020. "Agri-Food Markets towards Sustainable Patterns," Sustainability, MDPI, vol. 12(6), pages 1-35, March.
    2. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    3. Marull, Joan & Padró, Roc & La Rota-Aguilera, María José & Pino, Joan & Giocoli, Annalisa & Cirera, Jacob & Ruiz-Forés, Núria & Coll, Francesc & Serrano-Tovar, Tarik & Velasco-Fernández, Raúl, 2023. "Modelling land use planning: Socioecological integrated analysis of metropolitan green infrastructures," Land Use Policy, Elsevier, vol. 126(C).
    4. Anglade, J. & Billen, G. & Garnier, J. & Makridis, T. & Puech, T. & Tittel, C., 2015. "Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed," Agricultural Systems, Elsevier, vol. 139(C), pages 82-92.
    5. Eric Owusu Danquah & Yacob Beletse & Richard Stirzaker & Christopher Smith & Stephen Yeboah & Patricia Oteng-Darko & Felix Frimpong & Stella Ama Ennin, 2020. "Monitoring and Modelling Analysis of Maize ( Zea mays L.) Yield Gap in Smallholder Farming in Ghana," Agriculture, MDPI, vol. 10(9), pages 1-21, September.
    6. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    7. Sarah Rotz & Evan Fraser, 2015. "Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 459-473, September.
    8. Joseph, Sarah & Peters, Irene & Friedrich, Hanno, 2019. "Can Regional Organic Agriculture Feed the Regional Community? A Case Study for Hamburg and North Germany," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    9. Huang, Na & Lin, Xiaomao & Lun, Fei & Zeng, Ruiyun & Sassenrath, Gretchen F. & Pan, Zhihua, 2024. "Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas," Agricultural Systems, Elsevier, vol. 220(C).
    10. Niraj Prakash Joshi & Luni Piya, 2021. "Food and Nutrient Supply from Organic Agriculture in the Least Developed Countries and North America," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    11. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    12. Cristian Timmermann & Georges Félix, 2015. "Agroecology as a vehicle for contributive justice," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(3), pages 523-538, September.
    13. Zuzana Fuksová & Iveta Bošková & Jana Hlaváčková & Marek Novák, 2025. "The economic aspects of organic farms selling their products to organic or conventional market," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 71(4), pages 218-227.
    14. Guy Meunier, 2020. "Land-sparing vs land-sharing with incomplete policies [Rethinking the causes of deforestation: lessons from economic models]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 438-466.
    15. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    16. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    17. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    18. Tanushree Haldar & A. Damodaran, 2022. "Can cooperatives influence farmer’s decision to adopt organic farming? Agri-decision making under price volatility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5718-5742, April.
    19. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    20. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:64:y:2018:i:4:id:768-2017-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.