IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3240-d346748.html
   My bibliography  Save this article

Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany

Author

Listed:
  • Lars Biernat

    (Working Group Grass and Forage Science/Organic Agriculture, Institute for Crop Science and Plant Breeding, Christian-Albrechts-University, 24118 Kiel, Germany)

  • Friedhelm Taube

    (Working Group Grass and Forage Science/Organic Agriculture, Institute for Crop Science and Plant Breeding, Christian-Albrechts-University, 24118 Kiel, Germany)

  • Ralf Loges

    (Working Group Grass and Forage Science/Organic Agriculture, Institute for Crop Science and Plant Breeding, Christian-Albrechts-University, 24118 Kiel, Germany)

  • Christof Kluß

    (Working Group Grass and Forage Science/Organic Agriculture, Institute for Crop Science and Plant Breeding, Christian-Albrechts-University, 24118 Kiel, Germany)

  • Thorsten Reinsch

    (Working Group Grass and Forage Science/Organic Agriculture, Institute for Crop Science and Plant Breeding, Christian-Albrechts-University, 24118 Kiel, Germany)

Abstract

Land-use extensification by shifting from conventional to organic arable farming is often discussed as a measure for reducing greenhouse gas (GHG) emissions from agricultural land. Doubts about the benefits arise when emissions are calculated per product unit, particularly where high yields are possible under conventional management. Among the non-CO 2 GHG emissions, nitrous oxide (N 2 O) is the main contributor from arable land and is controlled by soil type, environmental conditions and management. In order to investigate how land-use change from conventional to organic farming would perform under highly productive site conditions in northwest Germany, and how this would affect the important greenhouse gases N 2 O and methane (CH 4 ), an on-farm field research was conducted over two experimental years. Two site-specific organic crop rotations, (i) with 25% legumes (grass + clover - winter wheat – winter rye – oats) and (ii) with 40% legumes (grass + clover – winter wheat – winter rye – spring field peas – winter rye), were compared with (iii) a conventional arable rotation (winter oilseed rape – winter wheat – winter wheat – sugar beet – winter wheat) and two reference systems, (iv) extensive grassland and (v) a beech forest), which were chosen as the baseline. The results showed that organic farming had lower N 2 O emissions of 0.7 N 2 O–N ha −1 year −1 than the conventional rotation, with 2.1 kg N 2 O–N ha −1 year −1 (p < 0.05), but higher emissions than the extensive grassland (0.3 kg N 2 O ha −1 year −1 ) and beech forest (0.4 kg N 2 O ha −1 year −1 ). CH 4 emissions were a negligible part of total GHG emissions (as CO 2 equivalents) in the two arable systems, and considerable uptake of CH 4 from the forest soils showed this was a GHG sink in the first experimental year. Organic systems produced up to 40% lower crop yields, but the emissions per product unit in rotation (iii) was not superior to (ii) during the two experimental years. Thus, arable organic farming showed the ability to produce agricultural commodities with low N 2 O emissions per unit area, and no differences in product-related emissions compared with conventional farming. Conventional and organic systems both showed potential for further mitigation of N 2 O emissions by controlling the field level nitrogen surplus to a minimum, and by the optimized timing of the removal of the grass–clover ley phase.

Suggested Citation

  • Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3240-:d:346748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    2. Hogh-Jensen, Henning & Loges, Ralf & Jorgensen, Finn V. & Vinther, Finn P. & Jensen, Erik S., 2004. "An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures," Agricultural Systems, Elsevier, vol. 82(2), pages 181-194, November.
    3. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    4. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongmei Shi & Lili Ren & Hongyu Li & Haizhen Zhang & Rufei Zhang, 2023. "Analysis of the Spatial Differentiation and Promotion Potential for Agricultural Eco-Efficiency—Evidence of Pollution’s Strong Disposability," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    2. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    2. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    3. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    4. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    5. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    6. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    7. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    8. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    9. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    10. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    11. Tina L. Saitone & Richard J. Sexton, 2017. "Agri-food supply chain: evolution and performance with conflicting consumer and societal demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 634-657.
    12. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    13. Guy Meunier, 2020. "Land-sparing vs land-sharing with incomplete policies [Rethinking the causes of deforestation: lessons from economic models]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 438-466.
    14. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    15. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    16. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    17. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).
    18. Karin Stein-Bachinger & Moritz Reckling & Johann Bachinger & Johannes Hufnagel & Wijnand Koker & Artur Granstedt, 2015. "Ecological Recycling Agriculture to Enhance Agro-Ecosystem Services in the Baltic Sea Region: Guidelines for Implementation," Land, MDPI, vol. 4(3), pages 1-17, August.
    19. Luciano Orden & Nicolás Ferreiro & Patricia Satti & Luis Manuel Navas-Gracia & Leticia Chico-Santamarta & Roberto A. Rodríguez, 2021. "Effects of Onion Residue, Bovine Manure Compost and Compost Tea on Soils and on the Agroecological Production of Onions," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
    20. Bellassen, Valentin & Drut, Marion & Hilal, Mohamed & Bodini, Antonio & Donati, Michele & de Labarre, Matthieu Duboys & Filipović, Jelena & Gauvrit, Lisa & Gil, José M. & Hoang, Viet & Malak-Rawlikows, 2022. "The economic, environmental and social performance of European certified food," Ecological Economics, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3240-:d:346748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.