IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p442-d1353563.html
   My bibliography  Save this article

An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland

Author

Listed:
  • Krzysztof Lachutta

    (Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland)

  • Krzysztof Józef Jankowski

    (Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland)

Abstract

This study was undertaken to examine the influence of the sowing date, sowing density, and split spring application of nitrogen (N) fertilizer on plant density, tillering, yield components, and grain yields of winter wheat ( Triticum aestivum L.) grown in northeastern Poland between 2018 and 2021. The experiment had a split-plot design with three sowing dates (early (3–6 September), delayed by 14 days, and delayed by 28 days), three sowing densities (200, 300, and 400 live grains m −2 ), and three split spring N rates (40 + 100, 70 + 70, and 100 + 40 kg ha −1 applied in BBCH stages 22–25 and 30–31, respectively). The number of spikes m −2 increased by 11% on average when winter wheat was sown with a delay of 14 days (17–20 September) and 28 days (1–4 October). The number of spikes m −2 was highest when winter wheat was sown at 300 and 400 live grains m −2 . The application of 100 + 40 kg N ha −1 (BBCH 22–25 and 30–31, respectively) increased the number of spikes m −2 . An increase in sowing density from 200 to 300 to 400 live grains m −2 decreased the number of grains spike −1 by 5% and 7%, respectively. Thousand grain weight (TGW) increased by 1% and 2% when sowing was delayed by 14 (17–20 September) and 28 days (1–4 October), respectively. In northeastern Poland, grain yields peaked when winter wheat was sown between 17 September and 4 October (10.52–10.58 Mg ha −1 ). In late-sown winter wheat, grain yields increased due to a higher number of spikes m −2 and higher grain weight. The highest sowing density (400 live grains m −2 ) induced a greater increase in grain yields than the lowest sowing density (200 live grains m −2 ) (10.25 vs.10.02 Mg ha −1 ). In winter wheat sown at a density of 400 live grains m −2 , the increase in grain yields resulted in a higher number of spikes m −2 . Grain yields peaked in response to 100 kg N ha −1 applied in BBCH stages 22–25 and 40 kg N ha −1 applied in BBCH stages 30–31 (this split N rate increased the number of spikes m −2 ). In turn, the highest straw yield (6.23 Mg ha −1 ) was obtained when the second split of N fertilizer was applied in BBCH stages 30–31 (40 + 100 kg N ha −1 ). Straw yields decreased significantly (by 6%) when winter wheat was sown late (early October). Delayed sowing (mid-September and early October) increased the harvest index (HI) of winter wheat by 5–7%. Split spring N application influenced grain and straw yields, but it had no effect on the HI of winter wheat.

Suggested Citation

  • Krzysztof Lachutta & Krzysztof Józef Jankowski, 2024. "An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland," Agriculture, MDPI, vol. 14(3), pages 1-23, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:442-:d:1353563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    2. J. Buczek & W. Jarecki & D. Bobrecka-Jamro, 2016. "The response of population and hybrid wheat to selected agro-environmental factors," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(2), pages 67-73.
    3. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    4. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    5. Yunlong Zhai & Quanzhong Wu & Guodong Chen & Hailin Zhang & Xiaogang Yin & Fu Chen, 2018. "Broadcasting Winter Wheat Can Increase Grain Yield without Reducing the Kernels per Spike and the Kernel Weight," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    6. Agami, Ramadan A. & Alamri, Saad A.M. & Abd El-Mageed, T.A. & Abousekken, M.S.M. & Hashem, Mohamed, 2018. "Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants," Agricultural Water Management, Elsevier, vol. 210(C), pages 261-270.
    7. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Mirosavljević & Vojislava Momčilović & Vladimir Aćin & Bojan Jocković & Jovana Timić & Goran Jaćimović, 2025. "Wheat, Barley, and Triticale Response to Nitrogen Fertilization in Pannonian Environment," Agriculture, MDPI, vol. 15(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    2. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Zhiqi Sun & Ruifa Hu & Yu Hong, 2022. "Does yield gap still matter? Evidence from rice production in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 829-840, June.
    4. Małgorzata Jagła & Piotr Szulc & Katarzyna Ambroży-Deręgowska & Iwona Mejza & Joanna Kobus-Cisowska, 2019. "Yielding of two types of maize cultivars in relation to selected agrotechnical factors," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(8), pages 416-423.
    5. Dietrich, Jan Philipp & Schmitz, Christoph & Müller, Christoph & Fader, Marianela & Lotze-Campen, Hermann & Popp, Alexander, 2012. "Measuring agricultural land-use intensity – A global analysis using a model-assisted approach," Ecological Modelling, Elsevier, vol. 232(C), pages 109-118.
    6. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Liang Chi & Mengshuai Zhu & Chen Shen & Jing Zhang & Liwei Xing & Xiangyang Zhou, 2023. "Does the Winner Take All in E-Commerce of Agricultural Products under the Background of Platform Monopoly?," Agriculture, MDPI, vol. 13(2), pages 1-16, February.
    8. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    9. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    10. Agarwal, Vernika & Malhotra, Snigdha & Dagar, Vishal & M. R, Pavithra, 2023. "Coping with public-private partnership issues: A path forward to sustainable agriculture," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    11. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    12. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    13. Barbara Breza-Boruta & Justyna Bauza-Kaszewska, 2023. "Effect of Microbial Preparation and Biomass Incorporation on Soil Biological and Chemical Properties," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
    14. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    17. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    18. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    19. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    20. Helena Kahiluoto & Janne Kaseva, 2016. "No Evidence of Trade-Off between Farm Efficiency and Resilience: Dependence of Resource-Use Efficiency on Land-Use Diversity," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:442-:d:1353563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.