IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp261-270.html
   My bibliography  Save this article

Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants

Author

Listed:
  • Agami, Ramadan A.
  • Alamri, Saad A.M.
  • Abd El-Mageed, T.A.
  • Abousekken, M.S.M.
  • Hashem, Mohamed

Abstract

Efficient nitrogen (N) nutrition has the capability to assuage water stress in crops by via sustaining the metabolic activities even at a low tissue water potential. The study aimed to evaluate the role of N-supply in improving the drought tolerance in wheat plants under a deficit irrigation (DI) condition. Two-pot experiments were conducted during the two successive seasons of 2015 and 2016; N-fertilizer (0.3 and 0.6 g N/kg soil) was added for plants under full crop water requirement (100% of ETc) or deficit irrigation (60% of ETc). The effect of N - supply on the growth, yield characteristics and water use efficiency (WUE), stem anatomy, physio-biochemical attributes, and antioxidant enzymes activities (SOD and CAT) of wheat plants exposed to DI stress was assessed. Results approved that the nitrogen-treated plants exposed to DI had higher growth and yield characteristics compared to the untreated plants. The grain yield, WUE, photosynthetic pigments, soluble carbohydrates, soluble proteins, total soluble phenols and free proline, relative water content (RWC%), and antioxidant enzymes activities as well as a positive changes in the stem anatomy and had lower relative membrane permeability (RMP) compared to nitrogen-untreated plants were significantly improved as the result of N-supplying. Application of N0.6 + I60 treatment was more effective in alleviating the damages of drought stress in wheat plants by maintaining higher RWC, WUE, and osmoprotectants, antioxidant system and lower RMP.

Suggested Citation

  • Agami, Ramadan A. & Alamri, Saad A.M. & Abd El-Mageed, T.A. & Abousekken, M.S.M. & Hashem, Mohamed, 2018. "Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants," Agricultural Water Management, Elsevier, vol. 210(C), pages 261-270.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:261-270
    DOI: 10.1016/j.agwat.2018.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418312769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alikhani-Koupaei, Majid & Fatahi, Reza & Zamani, Zabihollah & Salimi, Saeedeh, 2018. "Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder," Agricultural Water Management, Elsevier, vol. 209(C), pages 219-227.
    2. Li, Xiaojie & Kang, Shaozhong & Zhang, Xiaotao & Li, Fusheng & Lu, Hongna, 2018. "Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2," Agricultural Water Management, Elsevier, vol. 195(C), pages 71-83.
    3. Shi, Jianchu & Yasuor, Hagai & Yermiyahu, Uri & Zuo, Qiang & Ben-Gal, Alon, 2014. "Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles," Agricultural Water Management, Elsevier, vol. 146(C), pages 163-172.
    4. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    5. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    6. World Bank, 2006. "Reengaging in Agricultural Water Management: Challenges and Options," World Bank Publications - Books, The World Bank Group, number 6957, December.
    7. Li, Feng-Min & Song, Qiu-Hua & Liu, Hong-Sheng & Li, Feng-Rui & Liu, Xiao-Lan, 2001. "Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(3), pages 173-183, August.
    8. Xue, Jie & Zhou, San & Wang, Wei & Huo, Lina & Zhang, Li & Fang, Xinyu & Yang, Zhihong, 2018. "Water availability effects on plant growth, seed yield, seed quality in Cassia obtusifolia L., a medicinal plant," Agricultural Water Management, Elsevier, vol. 195(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Krzysztof Lachutta & Krzysztof Józef Jankowski, 2024. "An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland," Agriculture, MDPI, vol. 14(3), pages 1-23, March.
    3. Rady, Mohamed O.A. & Semida, Wael M. & Howladar, Saad.M. & Abd El-Mageed, Taia A., 2021. "Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L) under deficit irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Abd El-Mageed, Taia A. & El-Sherif, Ahmed M.A. & Abd El-Mageed, Shimaa A. & Abdou, Nasr M., 2019. "A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Shang, Yunqiu & Wang, Sen & Lin, Xiang & Gu, Shubo & Wang, Dong, 2023. "Supplemental irrigation at jointing improves spike formation of wheat tillers by regulating sugar distribution in ear and stem," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Lian, Huida & Qin, Cheng & He, Zhan & Niu, Jiayu & Zhang, Cong & Sang, Ting & Li, Hongbing & Zhang, Suiqi, 2020. "A synergistic increase in water and nitrogen use efficiencies in winter wheat cultivars released between the 1940s and the 2010s for cultivation in the drylands of the shaanxi Province in China," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    2. Yang, Xin & Zhang, Peng & Wei, Zhenhua & Liu, Jie & Hu, Xiaotao & Liu, Fulai, 2020. "Effects of CO2 fertilization on tomato fruit quality under reduced irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Abd El-Mageed, Taia A. & Semida, Wael M., 2015. "Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.)," Agricultural Water Management, Elsevier, vol. 159(C), pages 1-10.
    4. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    5. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    6. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    8. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    9. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    11. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    12. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    13. Abd El-Mageed, Taia A. & Semida, Wael M. & Rady, Mostafa M., 2017. "Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation," Agricultural Water Management, Elsevier, vol. 193(C), pages 46-54.
    14. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    15. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    16. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    17. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    18. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    19. Abdelkhalik, Abdelsattar & Pascual-Seva, Nuria & Nájera, Inmaculada & Giner, Alfonso & Baixauli, Carlos & Pascual, Bernardo, 2019. "Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 212(C), pages 99-110.
    20. Xiangxiang, Wang & Quanjiu, Wang & Jun, Fan & Qiuping, Fu, 2013. "Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau," Agricultural Water Management, Elsevier, vol. 129(C), pages 95-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:261-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.