IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1740-d1231361.html
   My bibliography  Save this article

Adapting Cropping Patterns to Climate Change: Risk Management Effectiveness of Diversification and Irrigation in Brandenburg (Germany)

Author

Listed:
  • Hannah Jona von Czettritz

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

  • Seyed-Ali Hosseini-Yekani

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

  • Johannes Schuler

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

  • Kurt-Christian Kersebaum

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
    Global Change Research Institute, The Czech Academy of Sciences, 603 00 Brno, Czech Republic)

  • Peter Zander

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

Abstract

Climate-induced production risk is expected to increase in the future. This study assesses the effectiveness of adapting crop rotations on arable farms in Brandenburg as a tool to enhance climate resilience. Two risk-minimizing measures are investigated: crop diversification and the inclusion of irrigated crops. Based on state-wide simulated yield data, the study compares two different scenarios. In the first scenario, the most profitable crop rotations based on predicted future weather conditions are chosen for each agro-ecological zone. In the second scenario, cropping plans are derived based on an adaption of the Target MOTAD (Minimization of Total Absolute Deviation) model taking climate-induced risks into account. A comparison of the scenarios shows a high risk reduction effect of diversification, while the economic risk reduction effect of irrigation only increases slightly. The trade-off between the highest possible gross margins and lower possible losses varies depending on the soil and climate conditions. Diversification contributed most to economic resilience in areas with moderate to low agricultural productivity. Subsidies focusing on diversification in less productive areas might be a tool to increase economic resilience with low risk-avoidance costs.

Suggested Citation

  • Hannah Jona von Czettritz & Seyed-Ali Hosseini-Yekani & Johannes Schuler & Kurt-Christian Kersebaum & Peter Zander, 2023. "Adapting Cropping Patterns to Climate Change: Risk Management Effectiveness of Diversification and Irrigation in Brandenburg (Germany)," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1740-:d:1231361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    2. Martin Weih & Alison J. Karley & Adrian C. Newton & Lars P. Kiær & Christoph Scherber & Diego Rubiales & Eveline Adam & James Ajal & Jana Brandmeier & Silvia Pappagallo & Angel Villegas-Fernández & Mo, 2021. "Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions," Agriculture, MDPI, vol. 11(3), pages 1-18, March.
    3. Eric Strobl, 2022. "Preserving local biodiversity through crop diversification," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 1140-1174, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Raschky, 2007. "Estimating the effects of risk transfer mechanisms against floods in Europe and U.S.A.: A dynamic panel approach," Working Papers 2007-05, Faculty of Economics and Statistics, Universität Innsbruck.
    2. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    3. Armbruster, Ginger & Endicott-Popovsky, Barbara & Whittington, Jan, 2012. "Are we prepared for the economic risk resulting from telecom hotel disruptions?," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(2), pages 55-65.
    4. Juan C. Surís-Regueiro & José L. Santiago, 2016. "An Input-Output methodological proposal to quantifying socio economic impacts linked to supply shocks," Working Papers 1603, Universidade de Vigo, Departamento de Economía Aplicada.
    5. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    6. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    7. Tanaka, Ayumu, 2015. "The impacts of natural disasters on plants' growth: Evidence from the Great Hanshin-Awaji (Kobe) earthquake," Regional Science and Urban Economics, Elsevier, vol. 50(C), pages 31-41.
    8. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    10. Qin Fan & Meri Davlasheridze, 2019. "Economic Impacts Of Migration And Brain Drain After Major Catastrophe: The Case Of Hurricane Katrina," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-21, February.
    11. Yasuyuki Todo & Kentaro Nakajima & Petr Matous, 2015. "How Do Supply Chain Networks Affect The Resilience Of Firms To Natural Disasters? Evidence From The Great East Japan Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 209-229, March.
    12. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    13. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    14. Mahsa Ghandi & Abbas Roozbahani, 2020. "Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 595-615, January.
    15. Gheorghe ZAMAN & Valentina VASILE, 2014. "Conceptual framework of economic resilience and vulnerability,at national and regional levels," Romanian Journal of Economics, Institute of National Economy, vol. 39(2(48)), pages 5-18, December.
    16. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    17. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    18. Carmen Camacho & Yu Sun, 2017. "Longterm decision making under the threat of earthquakes," Working Papers halshs-01670507, HAL.
    19. Jeesang Jung & Joost R. Santos & Yacov Y. Haimes, 2009. "International Trade Inoperability Input‐Output Model (IT‐IIM): Theory and Application," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 137-154, January.
    20. Meri Davlasheridze & Qin Fan & Wesley Highfield & Jiaochen Liang, 2021. "Economic impacts of storm surge events: examining state and national ripple effects," Climatic Change, Springer, vol. 166(1), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1740-:d:1231361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.