IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v35y2014icp311-318.html
   My bibliography  Save this article

Comparative environmental assessment of Athens urban buses—Diesel, CNG and biofuel powered

Author

Listed:
  • Nanaki, E.A.
  • Koroneos, C.J.
  • Xydis, G.A.
  • Rovas, D.

Abstract

Greenhouse gases (GHGs) emitted by road transport vehicles as a direct result of fossil fuel combustion and other environmental pollutants released throughout the life cycle of petroleum based fuels, encourage a shift towards alternative transport fuels. Within this frame, an environmental assessment was performed so as to evaluate the environmental implications of alternative fuels (natural gas and biofuels) penetration in the city buses of the city of Athens. The results are evaluated in terms of CO2, CO, HC, PM and NOx emissions. The findings show that CO2 emissions are significantly reduced in CNG buses compared to diesel powered buses. CO2 emissions can also be reduced by 7.85% in B10 blends and 78.45% in B100 blends, compared to diesel. The environmental assessment can be considered as a basis so as to investigate the viability of replacement of petroleum- based diesel with natural gas and biofuels in city transport buses. Concepts for sustainable bus transportation can be incorporated using the methodology defined in this study, in order to promote a sustainable transportation system and mitigate the climate change.

Suggested Citation

  • Nanaki, E.A. & Koroneos, C.J. & Xydis, G.A. & Rovas, D., 2014. "Comparative environmental assessment of Athens urban buses—Diesel, CNG and biofuel powered," Transport Policy, Elsevier, vol. 35(C), pages 311-318.
  • Handle: RePEc:eee:trapol:v:35:y:2014:i:c:p:311-318
    DOI: 10.1016/j.tranpol.2014.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X14000729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2014.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    2. Koroneos, C. & Nanaki, E., 2007. "Environmental assessment of the Greek transport sector," Energy Policy, Elsevier, vol. 35(11), pages 5422-5432, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brito, Thiago Luis Felipe & Moutinho dos Santos, Edmilson & Galbieri, Rodrigo & Costa, Hirdan Katarina de Medeiros, 2017. "Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 502-508.
    2. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    3. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Pérez, Javier & de Andrés, Juan Manuel & Borge, Rafael & de la Paz, David & Lumbreras, Julio & Rodríguez, Encarnación, 2019. "Vehicle fleet characterization study in the city of Madrid and its application as a support tool in urban transport and air quality policy development," Transport Policy, Elsevier, vol. 74(C), pages 114-126.
    5. George Xydis & Luca Pagliaricci & Živilė Paužaitė & Vygintas Grinis & Gyula Sallai & Peter Bakonyi & Radoslav Vician, 2021. "SMARTIES Project: The Survey of Needs for Municipalities and Trainers for Smart Cities," Challenges, MDPI, vol. 12(1), pages 1-10, May.
    6. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    7. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    8. George Dalianis & Evanthia Nanaki & George Xydis & Efthimios Zervas, 2016. "New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities," Energies, MDPI, vol. 9(3), pages 1-16, February.
    9. Ching-Chih Chang & Po-Chien Huang, 2022. "Carbon footprint of different fuels used in public transportation in Taiwan: a life cycle assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5811-5825, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    2. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    3. Sprei, Frances & Karlsson, Sten, 2013. "Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden," Energy Policy, Elsevier, vol. 53(C), pages 490-499.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    5. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    6. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    7. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    8. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
    9. Samaa Mohy & Khadija El Aasar & Yasmin Sakr, 2023. "Decomposition Analysis of Virtual Water Outflows for Major Egyptian Exporting Crops to the European Union," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    10. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    11. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    12. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    13. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    14. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 4(12), pages 1-24, December.
    15. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    16. David C Broadstock & Eleni Papathanasopoulou, 2013. "Gasoline demand in Greece: the importance of shifts in the underlying energy demand trend," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 141, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    17. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    18. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    19. Foster,Vivien & Dim,Jennifer Uju & Vollmer,Sebastian & Zhang,Fan, 2021. "Understanding Drivers of Decoupling of Global Transport CO2 Emissions from Economic Growth :Evidence from 145 Countries," Policy Research Working Paper Series 9809, The World Bank.
    20. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:35:y:2014:i:c:p:311-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.