IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p128-d64430.html
   My bibliography  Save this article

New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities

Author

Listed:
  • George Dalianis

    (School of Science and Engineering, Hellenic Open University, Riga Feraiou 167, 26222 Patra, Greece)

  • Evanthia Nanaki

    (Centre for Research and Technology Hellas, Institute for Research & Technology of Thessaly, Technology Park of Thessaly, 1st Industrial Area, 38500 Volos, Greece)

  • George Xydis

    (School of Science and Engineering, Hellenic Open University, Riga Feraiou 167, 26222 Patra, Greece
    Lab of Soft Energy Applications & Environmental Protection, Piraeus University of Applied Sciences, P.O. Box 41046, 12201 Athens, Greece)

  • Efthimios Zervas

    (School of Science and Technology, Hellenic Open University, Parodos Aristotelous 18, 26335 Patra, Greece)

Abstract

Methane (CH 4 ) is an important greenhouse gas emitted by vehicles. This study provides estimates of emissions of this important and often not well characterized greenhouse gas (GHG) emission related to transportation energy use. It aims to assist urban community planners and policymakers to prioritize and choose implementation strategies for low carbon cities. The paper focuses on emissions of CH 4 from vehicles. Unlike emissions of CO 2 , which are relatively easy to estimate, emissions of CH 4 are a function of many complex aspects of combustion dynamics and depend on the type of emission control systems used. In this context, they cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control systems. Emissions of CH 4 play a significant role with regards to the relative CO 2 –equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database based on literature review this study analyzes all the factors affecting the creation of CH 4 emissions from different vehicle types. Statistical analysis indicated “r” values ranging from 0.10 to 0.85 for all vehicles.

Suggested Citation

  • George Dalianis & Evanthia Nanaki & George Xydis & Efthimios Zervas, 2016. "New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities," Energies, MDPI, vol. 9(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:128-:d:64430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nanaki, E.A. & Koroneos, C.J. & Xydis, G.A. & Rovas, D., 2014. "Comparative environmental assessment of Athens urban buses—Diesel, CNG and biofuel powered," Transport Policy, Elsevier, vol. 35(C), pages 311-318.
    2. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    3. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torgrim Log & Wegar Bjerkeli Pedersen, 2019. "A Common Risk Classification Concept for Safety Related Gas Leaks and Fugitive Emissions?," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Bo Lan & You-Rong Li & Xu-Sheng Zhao & Jian-Dong Kang, 2018. "Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Orhan Altuğ Karabiber & George Xydis, 2019. "Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods," Energies, MDPI, vol. 12(5), pages 1-29, March.
    4. Panagiotis Michalitsakos & Lucian Mihet-Popa & George Xydis, 2017. "A Hybrid RES Distributed Generation System for Autonomous Islands: A DER-CAM and Storage-Based Economic and Optimal Dispatch Analysis," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    5. Wen Wang & Heng Wang & Huamin Li & Dongyin Li & Huaibin Li & Zhenhua Li, 2018. "Experimental Enrichment of Low-Concentration Ventilation Air Methane in Free Diffusion Conditions," Energies, MDPI, vol. 11(2), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    2. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    7. Hufei Ge & Silu Chen & Yujie Chen, 2018. "International Alliance of Green Hotels to Reach Sustainable Competitive Advantages," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    8. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    9. Taimoor Arif Kiani & Samina Sabir & Unbreen Qayyum & Sohail Anjum, 2023. "Estimating the effect of technological innovations on environmental degradation: empirical evidence from selected ASEAN and SAARC countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6529-6550, July.
    10. Jiafeng Gu, 2021. "Spatial Dynamics between Firm Sales and Environmental Responsibility: The Mediating Role of Corporate Innovation," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    11. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    12. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    13. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    14. Lorenzo Ardito & Antonio Messeni Petruzzelli & Federica Pascucci & Enzo Peruffo, 2019. "Inter‐firm R&D collaborations and green innovation value: The role of family firms' involvement and the moderating effects of proximity dimensions," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 185-197, January.
    15. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    16. Wang, Yujie & Chen, Hong & Long, Ruyin & Liu, Bei & Jiang, Shiyan & Yang, Xingxing & Yang, Menghua, 2021. "Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework," Resources Policy, Elsevier, vol. 71(C).
    17. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    18. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    19. Bistline, John E., 2016. "Energy technology R&D portfolio management: Modeling uncertain returns and market diffusion," Applied Energy, Elsevier, vol. 183(C), pages 1181-1196.
    20. Serenella Caravella & Valeria Costantini & Francesco Crespi, 2021. "Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:128-:d:64430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.