IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v18y2011i6p814-824.html
   My bibliography  Save this article

Empirical evidence from the Greater Toronto Area on the acceptability and impacts of HOT lanes

Author

Listed:
  • Finkleman, Jeremy
  • Casello, Jeffrey
  • Fu, Liping

Abstract

This paper describes a study on willingness to pay (WTP) and public acceptability for High-Occupancy/Toll (HOT) lanes using empirical evidence from Toronto, Ontario, Canada. From a stated preference survey of more than 250 drivers, we estimate mean willingness to pay values under various trip conditions and for various traveler characteristics. The study provides statistically significant evidence on the relationships between willingness to pay and the improvement in travel speeds in HOT lanes, the length of the trip, and the urgency of on-time arrival. Furthermore, our study confirms several literature findings from previous studies on the relationship between travelers' willingness to pay and income as well as prior experience with HOT lanes. Some of the findings are qualitatively validated on the basis of the observed travel behavior in choosing tolled facilities over untolled facilities during periods of heightened congestion and urgency.

Suggested Citation

  • Finkleman, Jeremy & Casello, Jeffrey & Fu, Liping, 2011. "Empirical evidence from the Greater Toronto Area on the acceptability and impacts of HOT lanes," Transport Policy, Elsevier, vol. 18(6), pages 814-824, November.
  • Handle: RePEc:eee:trapol:v:18:y:2011:i:6:p:814-824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X11000771
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Podgorski, Kaethe V. & Kockelman, Kara M., 2006. "Public perceptions of toll roads: A survey of the Texas perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 888-902, December.
    2. Dahlgren, Joy, 2002. "High-occupancy/toll lanes: where should they be implemented?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 239-255, March.
    3. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    4. Levine, Jonathan & Garb, Yaakov, 2002. "Congestion pricing's conditional promise: promotion of accessibility or mobility?," Transport Policy, Elsevier, vol. 9(3), pages 179-188, July.
    5. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Janson & David Levinson, 2013. "HOT or Not: Driver Elasticity to Price on the MnPASS HOT Lanes," Working Papers 000111, University of Minnesota: Nexus Research Group.
    2. Aboudina, Aya & Abdelgawad, Hossam & Abdulhai, Baher & Habib, Khandker Nurul, 2016. "Time-dependent congestion pricing system for large networks: Integrating departure time choice, dynamic traffic assignment and regional travel surveys in the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 411-430.
    3. Laval, Jorge A. & Cho, Hyun W. & Muñoz, Juan C. & Yin, Yafeng, 2015. "Real-time congestion pricing strategies for toll facilities," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 19-31.
    4. Janson, Michael & Levinson, David, 2014. "HOT or not," Research in Transportation Economics, Elsevier, vol. 44(C), pages 21-32.
    5. Eliasson, Jonas, 2017. "Congestion pricing," MPRA Paper 88224, University Library of Munich, Germany.
    6. Abulibdeh, Ammar & Zaidan, Esmat, 2018. "Analysis of factors affecting willingness to pay for high-occupancy-toll lanes: Results from stated-preference survey of travelers," Journal of Transport Geography, Elsevier, vol. 66(C), pages 91-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    2. de Palma, André & Kilani, Moez & Lindsey, Robin, 2008. "The merits of separating cars and trucks," Journal of Urban Economics, Elsevier, vol. 64(2), pages 340-361, September.
    3. Daniel A. Brent & Austin Gross, 2018. "Dynamic road pricing and the value of time and reliability," Journal of Regional Science, Wiley Blackwell, vol. 58(2), pages 330-349, March.
    4. Fan, Wenbo & Jiang, Xinguo & Erdogan, Sevgi & Sun, Yanshuo, 2016. "Modeling and evaluating FAIR highway performance and policy options," Transport Policy, Elsevier, vol. 48(C), pages 156-168.
    5. Chu, Chih-Peng & Tsai, Jyh-Fa & Hu, Shou-Ren, 2012. "Optimal starting location of an HOV lane for a linear monocentric urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 457-466.
    6. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    7. Abulibdeh, Ammar & Zaidan, Esmat, 2018. "Analysis of factors affecting willingness to pay for high-occupancy-toll lanes: Results from stated-preference survey of travelers," Journal of Transport Geography, Elsevier, vol. 66(C), pages 91-105.
    8. Clements, Lewis M. & Kockelman, Kara M. & Alexander, William, 2021. "Technologies for congestion pricing," Research in Transportation Economics, Elsevier, vol. 90(C).
    9. Vanoutrive, Thomas & Zijlstra, Toon, 2018. "Who has the right to travel during peak hours? On congestion pricing and ‘desirable’ travellers," Transport Policy, Elsevier, vol. 63(C), pages 98-107.
    10. Jonathan E. Hughes & Daniel Kaffine, 2013. "When is Encouraging Consumption of Common Property Second Best? Sorting, Congestion and Entry in the Commons," Working Papers 2013-05, Colorado School of Mines, Division of Economics and Business.
    11. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    12. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    13. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    14. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    15. Barter, Paul A., 2005. "A vehicle quota integrated with road usage pricing: A mechanism to complete the phase-out of high fixed vehicle taxes in Singapore," Transport Policy, Elsevier, vol. 12(6), pages 525-536, November.
    16. Janson, Michael & Levinson, David, 2014. "HOT or not," Research in Transportation Economics, Elsevier, vol. 44(C), pages 21-32.
    17. Casady, Carter B. & Gómez-Ibáñez, José A. & Schwimmer, Emily, 2020. "Toll-managed lanes: A simplified benefit-cost analysis of seven US projects," Transport Policy, Elsevier, vol. 89(C), pages 38-53.
    18. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    19. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    20. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:18:y:2011:i:6:p:814-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.