IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Time-dependent congestion pricing system for large networks: Integrating departure time choice, dynamic traffic assignment and regional travel surveys in the Greater Toronto Area

Listed author(s):
  • Aboudina, Aya
  • Abdelgawad, Hossam
  • Abdulhai, Baher
  • Habib, Khandker Nurul
Registered author(s):

    Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416300076
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part A: Policy and Practice.

    Volume (Year): 94 (2016)
    Issue (Month): C ()
    Pages: 411-430

    as
    in new window

    Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:411-430
    DOI: 10.1016/j.tra.2016.10.005
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=547&ref=547_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, March.
    3. Finkleman, Jeremy & Casello, Jeffrey & Fu, Liping, 2011. "Empirical evidence from the Greater Toronto Area on the acceptability and impacts of HOT lanes," Transport Policy, Elsevier, vol. 18(6), pages 814-824, November.
    4. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    5. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    6. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    7. Verhoef, Erik T., 2002. "Second-best congestion pricing in general networks. Heuristic algorithms for finding second-best optimal toll levels and toll points," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 707-729, September.
    8. Kevin Washbrook & Wolfgang Haider & Mark Jaccard, 2006. "Estimating commuter mode choice: A discrete choice analysis of the impact of road pricing and parking charges," Transportation, Springer, vol. 33(6), pages 621-639, November.
    9. Habib, Khandker Nurul & Sasic, Ana & Weis, Claude & Axhausen, Kay, 2013. "Investigating the nonlinear relationship between transportation system performance and daily activity–travel scheduling behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 342-357.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:411-430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.