IDEAS home Printed from
   My bibliography  Save this paper

Calculating Benefits of Infrastructural Measures


  • Christof Zoellig


  • Kay W Axhausen


The paper continues the ongoing discussion about the concept of accessibility and its applicability to infrastructural appraisal. David Metz states that travel time savings disappear in a long term perspective and to empirically untested "constant travel time budget" literature. Metz therefore concludes that it is inadequate to measure the benefits of an infrastructural investment by means of travel time savings only. Further it is noted that the inadequacy results from longer term decisions - such as location choice - which arise in the long run. These longer term decisions should therefore be included in the modeling of transport - or better of the comprehensive economic - systems for public infrastructure appraisal respectively. Some authors hint at the possibility to measure consumer surplus applying the concept of the expected maximum utility (EMU). If we accept this argument the question arises to what extent we produce errors with "short term" models. To examine this issue we implement a proof of concept model with the purpose to simulate long term equilibrium with different decision possibilities in a minimal urban system. We use random utility maximisation and discrete choice theory with an agent-based modelling approach to respect the discrete nature, consistency with discrete choice theory and to what seems to many to be the way forward in the field. We simulate equilibrium conditions letting the agents chose their commuting situation allowing for different combinations of decision dimensions. The results show that improving accessibility results in an increasing and expected demand for more peripheral locations. Thus we conclude that profiteers of infrastructural measures are property owners whose properties get higher accessibility. Concerning the utility indicators we find that EMU is more consistent. Further we note substantial differences when applying different decision spaces. The appropriateness of using travel time savings as indicator for utility gains very much depends on considered time horizons because trade-offs between utility out of short- and long-term decisions is likely to occur. In case of assessing long time periods we should operate with models incorporating long-term decisions such as location choice. This is a strong argument in favor of LUTI-models.

Suggested Citation

  • Christof Zoellig & Kay W Axhausen, 2011. "Calculating Benefits of Infrastructural Measures," ERSA conference papers ersa10p1354, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa10p1354

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    2. Fernandez L., J. Enrique & Friesz, Terry L., 1983. "Equilibrium predictions in transportation markets: The state of the art," Transportation Research Part B: Methodological, Elsevier, vol. 17(2), pages 155-172, April.
    3. Janson, Bruce N., 1991. "Dynamic traffic assignment for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 25(2-3), pages 143-161.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, May.
    5. Robert Axelrod, 1997. "Advancing the Art of Simulation in the Social Sciences," Working Papers 97-05-048, Santa Fe Institute.
    6. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    7. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa10p1354. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.