IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v61y2014icp56-67.html
   My bibliography  Save this article

A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation

Author

Listed:
  • Tuzun Aksu, Dilek
  • Ozdamar, Linet

Abstract

This paper focuses on the planning of road restoration efforts during disaster response and recovery. The primary objective is to maximize network accessibility for all locations in the area during the restoration process so that survivors are evacuated and road side debris is removed as soon as possible. We propose a dynamic path based mathematical model that identifies criticality of blockages and clears them with limited resources. This model is more efficient than link based models and can solve restoration problems for realistic size networks within reasonable time. Algorithm performance is demonstrated using two instances based on districts in Istanbul.

Suggested Citation

  • Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
  • Handle: RePEc:eee:transe:v:61:y:2014:i:c:p:56-67
    DOI: 10.1016/j.tre.2013.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513001762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tschangho John Kim & Heejoo Ham & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Review of Economic Design, Springer;Society for Economic Design, vol. 81(2), pages 223-246, April.
    2. Tschangho John Kim & Heejoo Ham & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Economics of Governance, Springer, vol. 81(2), pages 223-246, April.
    3. Heejoo Ham & Tschangho John Kim & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(2), pages 223-246.
    4. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    5. Ham, Heejoo & Kim, Tschangho John & Boyce, David, 2005. "Assessment of economic impacts from unexpected events with an interregional commodity flow and multimodal transportation network model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(10), pages 849-860, December.
    6. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    7. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    8. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    9. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    10. Chang, Stephanie E. & Nojima, Nobuoto, 2001. "Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 475-494, July.
    11. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özdamar, Linet & Tüzün Aksu, Dilek & Ergüneş, Biket, 2014. "Coordinating debris cleanup operations in post disaster road networks," Socio-Economic Planning Sciences, Elsevier, vol. 48(4), pages 249-262.
    2. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    3. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    4. Danczyk, Adam & Di, Xuan & Liu, Henry X. & Levinson, David M., 2017. "Unexpected versus expected network disruption: Effects on travel behavior," Transport Policy, Elsevier, vol. 57(C), pages 68-78.
    5. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    6. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    7. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    8. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    9. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2009. "Combining geoprocessing and interregional input-output systems: An application to the State of São Paulo in Brazil," MPRA Paper 30696, University Library of Munich, Germany.
    10. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    11. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2008. "Geoprocessing and estimation of interregional input-output systems an application to the state of Sao Paulo in Brazil," MPRA Paper 54036, University Library of Munich, Germany.
    12. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    13. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    14. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    15. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    17. Ham, Heejoo & Kim, Tschangho John & Boyce, David, 2005. "Assessment of economic impacts from unexpected events with an interregional commodity flow and multimodal transportation network model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(10), pages 849-860, December.
    18. Stephanie E Chang, 2003. "Transportation Planning for Disasters: An Accessibility Approach," Environment and Planning A, , vol. 35(6), pages 1051-1072, June.
    19. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    20. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:61:y:2014:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.