IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v48y2012i3p578-590.html
   My bibliography  Save this article

Collaboration decisions on disruption recovery service in urban public tram systems

Author

Listed:
  • Zeng, Amy Z.
  • Durach, Christian F.
  • Fang, Yan

Abstract

This research focuses on the decisions on recovery services to deal with short-term disruptions in public tram systems. The disruption recovery approach used in Munich, Germany – the best service acclaimed by the public, is adopted as the basis to examine whether to collaborate with a taxi company to provide the recovery service and how to price to compensate the service. The two involving parties’ decision functions with the taxi’s average arrival time as the leading decision variable are formulated and analyzed. Both theoretical and numerical sensitivity analyses are conducted to shed lights on the critical factors affecting the decisions.

Suggested Citation

  • Zeng, Amy Z. & Durach, Christian F. & Fang, Yan, 2012. "Collaboration decisions on disruption recovery service in urban public tram systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 578-590.
  • Handle: RePEc:eee:transe:v:48:y:2012:i:3:p:578-590
    DOI: 10.1016/j.tre.2011.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554511001414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2011.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    2. Andrea D’Ariano & Marco Pranzo, 2009. "An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances," Networks and Spatial Economics, Springer, vol. 9(1), pages 63-84, March.
    3. Richard Freling & Ramon Lentink & Albert Wagelmans, 2004. "A Decision Support System for Crew Planning in Passenger Transportation Using a Flexible Branch-and-Price Algorithm," Annals of Operations Research, Springer, vol. 127(1), pages 203-222, March.
    4. Sørensen, Claus Hedegaard & Longva, Frode, 2011. "Increased coordination in public transport--which mechanisms are available?," Transport Policy, Elsevier, vol. 18(1), pages 117-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    2. Elżbieta Szymańska & Eugenia Panfiluk & Halina Kiryluk, 2021. "Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Białowieża Forest Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    3. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    4. Pender, Brendan & Currie, Graham & Delbosc, Alexa & Shiwakoti, Nirajan, 2014. "Improving bus bridging responses via satellite bus reserve locations," Journal of Transport Geography, Elsevier, vol. 34(C), pages 202-210.
    5. Paul Davidsson & Banafsheh Hajinasab & Johan Holmgren & Åse Jevinger & Jan A. Persson, 2016. "The Fourth Wave of Digitalization and Public Transport: Opportunities and Challenges," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    6. Åse Jevinger & Jan A. Persson, 2019. "Exploring the potential of using real-time traveler data in public transport disturbance management," Public Transport, Springer, vol. 11(2), pages 413-441, August.
    7. Yajuan Deng & Xiaolei Ru & Ziqi Dou & Guohua Liang, 2018. "Design of Bus Bridging Routes in Response to Disruption of Urban Rail Transit," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    8. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.
    9. Wei, Dali & Liu, Hongchao & Qin, Yong, 2015. "Modeling cascade dynamics of railway networks under inclement weather," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 95-122.
    10. Lin, Teddy & Shalaby, Amer & Miller, Eric, 2016. "Transit User Behaviour in Response to Service Disruption: State of Knowledge," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319263, Transportation Research Forum.
    11. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    12. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    13. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    14. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    2. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.
    3. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    4. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    5. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    6. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    7. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    8. Corman, F. & D’Ariano, A. & Pacciarelli, D. & Pranzo, M., 2012. "Optimal inter-area coordination of train rescheduling decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 71-88.
    9. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    10. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    11. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    12. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    13. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    14. Vaidyanathan, Balachandran, 2007. "Multi-Commodity Network Flow Based Approaches for the Railroad Crew Scheduling Problem," 48th Annual Transportation Research Forum, Boston, Massachusetts, March 15-17, 2007 207928, Transportation Research Forum.
    15. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    16. Elio Canestrelli & Marco Corazza & Giuseppe Nadai & Raffaele Pesenti, 2017. "Managing the Ship Movements in the Port of Venice," Networks and Spatial Economics, Springer, vol. 17(3), pages 861-887, September.
    17. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    18. Silke Jütte & Marc Albers & Ulrich W. Thonemann & Knut Haase, 2011. "Optimizing Railway Crew Scheduling at DB Schenker," Interfaces, INFORMS, vol. 41(2), pages 109-122, April.
    19. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    20. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:48:y:2012:i:3:p:578-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.