IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v178y2023ics1366554523002430.html
   My bibliography  Save this article

A market mechanism for multiple air traffic resources

Author

Listed:
  • Brugnara, Irene
  • Castelli, Lorenzo
  • Pesenti, Raffaele

Abstract

We introduce a model that extends the concept of air traffic flow management slot to the concept of time window, allowing to effectively deal with a network of interacting regulations. The model aims at minimising the total cost of delay of a time window allocation to flights and is based on an integer programming problem. It consists in a market-based mechanism between flights and a central authority to trade time windows, which fulfils the properties of individual rationality (every participating airline has a non-negative profit from the mechanism) and weak budget-balance (the mechanism requires no external subsidisation). Equity is assumed to be respected because the First Planned First Served allocation is an endowment guaranteed to all flights and allocated for free. The proposed market mechanism can be implemented in a distributed manner preventing the disclosure of confidential information by airlines, and is based on the Lagrangian relaxation of the integer optimisation problem, solved through the subgradient algorithm. We present some computational experiments conducted to test the model on some real instances of air traffic data.

Suggested Citation

  • Brugnara, Irene & Castelli, Lorenzo & Pesenti, Raffaele, 2023. "A market mechanism for multiple air traffic resources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transe:v:178:y:2023:i:c:s1366554523002430
    DOI: 10.1016/j.tre.2023.103255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    2. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Rigonat, Desirée, 2017. "Reducing ATFM delays through strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 42-59.
    3. Zhang, Qiuhan & Le, Meilong & Xu, Yan, 2021. "Collaborative delay management towards demand-capacity balancing within User Driven Prioritisation Process," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Khan, Waqar Ahmed & Ma, Hoi-Lam & Ouyang, Xu & Mo, Daniel Y., 2021. "Prediction of aircraft trajectory and the associated fuel consumption using covariance bidirectional extreme learning machines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Dalmau, Ramon & Gawinowski, Gilles & Anoraud, Camille, 2022. "Comparison of various temporal air traffic flow management models in critical scenarios," Journal of Air Transport Management, Elsevier, vol. 105(C).
    3. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    4. Okwir, Simon & Amouzgar, Kaveh & Ng, Amos HC., 2025. "Exploring prediction accuracy for optimal taxi times in airport operations using various machine learning models," Journal of Air Transport Management, Elsevier, vol. 122(C).
    5. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.
    6. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    7. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    8. Li, Qingwei & Savachkin, Alex, 2013. "A heuristic approach to the design of fortified distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 138-148.
    9. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    10. Jiang, Yangsheng & Huangfu, Junjie & Xiao, Guosheng & Zhang, Yongxiang & Yao, Zhihong, 2025. "Energy-efficient trajectory design of connected automated vehicles platoon: A unified modeling approach using space-time-speed grid networks," Energy, Elsevier, vol. 314(C).
    11. Waqar Ahmed Khan & Mahmoud Masoud & Abdelrahman E. E. Eltoukhy & Mehran Ullah, 2025. "Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1313-1339, February.
    12. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    13. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    14. Vasile BRĂTIAN, 2018. "Portfolio Optimization. Application of the Markowitz Model Using Lagrange and Profitability Forecast," Expert Journal of Economics, Sprint Investify, vol. 6(1), pages 26-34.
    15. Karademir, Cigdem & Beirigo, Breno A. & Atasoy, Bilge, 2025. "A two-echelon multi-trip vehicle routing problem with synchronization for an integrated water- and land-based transportation system," European Journal of Operational Research, Elsevier, vol. 322(2), pages 480-499.
    16. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    17. Costa, Alysson M. & França, Paulo M. & Lyra Filho, Christiano, 2011. "Two-level network design with intermediate facilities: An application to electrical distribution systems," Omega, Elsevier, vol. 39(1), pages 3-13, January.
    18. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    19. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    20. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:178:y:2023:i:c:s1366554523002430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.