Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02303-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Weiguang Fang & Yu Guo & Wenhe Liao & Karthik Ramani & Shaohua Huang, 2020. "Big data driven jobs remaining time prediction in discrete manufacturing system: a deep learning-based approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2751-2766, May.
- Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
- Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
- Riccardo Rosati & Luca Romeo & Gianalberto Cecchini & Flavio Tonetto & Paolo Viti & Adriano Mancini & Emanuele Frontoni, 2023. "From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 107-121, January.
- Yuhang Pan & Yonghao Wang & Ping Zhou & Ying Yan & Dongming Guo, 2020. "Activation functions selection for BP neural network model of ground surface roughness," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1825-1836, December.
- Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
- Hyojoong Kim & Heeyoung Kim, 2023. "Deep embedding kernel mixture networks for conditional anomaly detection in high-dimensional data," International Journal of Production Research, Taylor & Francis Journals, vol. 61(4), pages 1101-1113, February.
- Jing Wang & Shubin Lyu & C. L. Philip Chen & Huimin Zhao & Zhengchun Lin & Pingsheng Quan, 2023. "SPRBF-ABLS: a novel attention-based broad learning systems with sparse polynomial-based radial basis function neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1779-1794, April.
- Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
- Antoine Proteau & Antoine Tahan & Ryad Zemouri & Marc Thomas, 2023. "Predicting the quality of a machined workpiece with a variational autoencoder approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 719-737, February.
- Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2025. "Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 61-93, January.
- Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
- Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
- Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
- Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).
- Devin Young & Britannia Vondrasek & Michael W. Czabaj, 2025. "Machine learning guided design of experiments to accelerate exploration of a material extrusion process parameter space," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 491-508, January.
- Mafakheri, Aso & Sulaimany, Sadegh & Mohammadi, Sara, 2023. "Predicting the establishment and removal of global trade relations for import and export of petrochemical products," Energy, Elsevier, vol. 269(C).
- Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.
- Junliang Wang & Pengjie Gao & Zhe Li & Wei Bai, 2021. "Hierarchical Transfer Learning for Cycle Time Forecasting for Semiconductor Wafer Lot under Different Work in Process Levels," Mathematics, MDPI, vol. 9(17), pages 1-11, August.
- Xiaokang Huang & Xukai Ren & Huanwei Yu & Xiyong Du & Xianfeng Chen & Ze Chai & Xiaoqi Chen, 2024. "Partitioned abrasive belt condition monitoring based on a unified coefficient and image processing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 905-923, February.
- Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
- Ayoub Chakroun & Yasmina Hani & Abderrahmane Elmhamedi & Faouzi Masmoudi, 2024. "A predictive maintenance model for health assessment of an assembly robot based on machine learning in the context of smart plant," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3995-4013, December.
- Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
- Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
- Xubao Liu & Yuhang Pan & Ying Yan & Yonghao Wang & Ping Zhou, 2022. "Adaptive BP Network Prediction Method for Ground Surface Roughness with High-Dimensional Parameters," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
- Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
- Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
- Alexander Kramer & Fernando Morgado‐Dias, 2020. "Artificial intelligence in process control applications and energy saving: a review and outlook," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1133-1150, December.
- Rishi Kumar & Kuldip Singh Sangwan & Christoph Herrmann & Rishi Ghosh, 2024. "Development of a cyber physical production system framework for smart tool health management," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3037-3066, October.
- Geng, Zhiqiang & Zhang, Yanhui & Li, Chengfei & Han, Yongming & Cui, Yunfei & Yu, Bin, 2020. "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature," Energy, Elsevier, vol. 194(C).
More about this item
Keywords
Autoencoder; Deep learning; Extreme learning machine; Network weights; Order completion time;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02303-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.