IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i2p480-499.html
   My bibliography  Save this article

A two-echelon multi-trip vehicle routing problem with synchronization for an integrated water- and land-based transportation system

Author

Listed:
  • Karademir, Cigdem
  • Beirigo, Breno A.
  • Atasoy, Bilge

Abstract

This study focuses on two-echelon synchronized logistics problems in the context of integrated water- and land-based transportation (IWLT) systems. The aim is to meet the increasing demand in city logistics as a result of the growth in transport activities, including parcel delivery, food delivery, and waste collection. We propose two models, a novel mixed integer linear joint model, and a logic-based Benders’ decomposition (LBBD) model, for a two-echelon problem under realistic settings such as multi-trips, time windows, and synchronization at the satellites with no storage and limited resource capacities. The objective is to optimize transfers and satellite assignments, thereby reducing overall logistics costs for street vehicles and vessels. Computational experiments demonstrate that the LBBD model is more robust in terms of solution quality and solution time on average while the added value of the LBBD is more evident when solving large-scale instances with 100 customers, reducing the overall costs by 10.6% on average and significantly reducing the fleet costs on both networks. Furthermore, we assess the effect of changing cost parameters and satellite locations in the proposed IWLT system–analyzing system behavior and suggesting potential improvements–and evaluate several system alternatives in city logistics–consisting of different transportation network designs (single- and two-echelon), vehicle types, and operational constraints. On average, the proposed two-echelon IWLT system reduces the number of kilometers traveled by vehicles at street level by ranging from 20% to 30% compared to a typical single-echelon service design that relies solely on trucks.

Suggested Citation

  • Karademir, Cigdem & Beirigo, Breno A. & Atasoy, Bilge, 2025. "A two-echelon multi-trip vehicle routing problem with synchronization for an integrated water- and land-based transportation system," European Journal of Operational Research, Elsevier, vol. 322(2), pages 480-499.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:480-499
    DOI: 10.1016/j.ejor.2024.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grangier, Philippe & Gendreau, Michel & Lehuédé, Fabien & Rousseau, Louis-Martin, 2016. "An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 80-91.
    2. Ester DIVIESO & Orlando Fontes LIMA JÚNIOR & Henrique Cândido De OLIVEIRA, 2021. "The Use Of Waterways For Urban Logistics: The Case Of Brazil," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 16(1), pages 62-85, February.
    3. Fragkogios, Antonios & Qiu, Yuzhuo & Saharidis, Georgios K.D. & Pardalos, Panos M., 2024. "An accelerated benders decomposition algorithm for the solution of the multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 317(2), pages 500-514.
    4. Rosario Paradiso & Roberto Roberti & Demetrio Laganá & Wout Dullaert, 2020. "An Exact Solution Framework for Multitrip Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 68(1), pages 180-198, January.
    5. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    6. Groothedde, Bas & Ruijgrok, Cees & Tavasszy, Lóri, 2005. "Towards collaborative, intermodal hub networks: A case study in the fast moving consumer goods market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 567-583, November.
    7. Nico Dellaert & Fardin Dashty Saridarq & Tom Van Woensel & Teodor Gabriel Crainic, 2019. "Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 463-479, March.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Mads Jepsen & Simon Spoorendonk & Stefan Ropke, 2013. "A Branch-and-Cut Algorithm for the Symmetric Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 47(1), pages 23-37, February.
    10. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti & Roberto Wolfler Calvo, 2013. "An Exact Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Operations Research, INFORMS, vol. 61(2), pages 298-314, April.
    11. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    12. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    13. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    14. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2020. "Two-echelon urban deliveries using autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    16. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    17. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    18. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    19. Betül Ahat & T?naz Ekim & Z. Caner Taşkın, 2018. "Integer Programming Formulations and Benders Decomposition for the Maximum Induced Matching Problem," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 43-56, February.
    20. Anderluh, Alexandra & Nolz, Pamela C. & Hemmelmayr, Vera C. & Crainic, Teodor Gabriel, 2021. "Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics," European Journal of Operational Research, Elsevier, vol. 289(3), pages 940-958.
    21. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    22. Karim Pérez Martínez & Yossiri Adulyasak & Raf Jans, 2022. "Logic-Based Benders Decomposition for Integrated Process Configuration and Production Planning Problems," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2177-2191, July.
    23. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    24. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    25. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    26. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    27. Antonio Frangioni, 2005. "About Lagrangian Methods in Integer Optimization," Annals of Operations Research, Springer, vol. 139(1), pages 163-193, October.
    28. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    29. Huang, Nan & Li, Jiliu & Zhu, Wenbin & Qin, Hu, 2021. "The multi-trip vehicle routing problem with time windows and unloading queue at depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    30. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    31. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    2. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    3. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    5. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    6. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    7. Xiong, Xiaoyun & Han, Jialin & Yin, Yunqiang & Cheng, T.C.E., 2025. "An exact method for the two-echelon split-delivery vehicle routing problem for liquefied natural gas delivery with the boil-off phenomenon," European Journal of Operational Research, Elsevier, vol. 321(1), pages 123-146.
    8. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    9. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    10. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    11. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    12. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    13. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    14. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    15. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    16. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    17. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    18. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    19. Mühlbauer, Ferdinand & Fontaine, Pirmin, 2021. "A parallelised large neighbourhood search heuristic for the asymmetric two-echelon vehicle routing problem with swap containers for cargo-bicycles," European Journal of Operational Research, Elsevier, vol. 289(2), pages 742-757.
    20. Nan Ding & Manman Li & Jianming Hao, 2023. "A Two-Phase Approach to Routing a Mixed Fleet with Intermediate Depots," Mathematics, MDPI, vol. 11(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:480-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.