IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i3p940-958.html
   My bibliography  Save this article

Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics

Author

Listed:
  • Anderluh, Alexandra
  • Nolz, Pamela C.
  • Hemmelmayr, Vera C.
  • Crainic, Teodor Gabriel

Abstract

We present a multi-ob’jective two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in the context of urban freight deliveries. Inner-city center deliveries are performed by small vehicles due to access restrictions, while deliveries outside this area are carried out by conventional vehicles for economic reasons. Goods are transferred from the first to the second echelon by synchronized meetings between vehicles of the respective echelons. We investigate the assignment of customers to vehicles, i.e., to the first or second echelon, within a so-called ‘grey zone’ on the border of the inner city and the area around it. While doing this, the economic objective as well as negative external effects of transport, such as emissions and disturbance (negative impact on citizens due to noise and congestion), are taken into account to include objectives of companies as well as of citizens and municipal authorities. Our metaheuristic – a large neighborhood search embedded in a heuristic rectangle/cuboid splitting – addresses this problem efficiently. We investigate the impact of the free assignment of part of the customers (‘grey zone’) to echelons and of three different city layouts on the solution. Computational results show that the impact of a ‘grey zone’ and thus the assignment of these customers to echelons depend significantly on the layout of a city. Potentially pareto-optimal solutions for two and three objectives are illustrated to efficiently support decision makers in sustainable city logistics planning processes.

Suggested Citation

  • Anderluh, Alexandra & Nolz, Pamela C. & Hemmelmayr, Vera C. & Crainic, Teodor Gabriel, 2021. "Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics," European Journal of Operational Research, Elsevier, vol. 289(3), pages 940-958.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:3:p:940-958
    DOI: 10.1016/j.ejor.2019.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719306289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Musso, Antonio & Rothengatter, Werner, 2013. "Internalisation of external costs of transport–A target driven approach with a focus on climate change," Transport Policy, Elsevier, vol. 29(C), pages 303-314.
    3. Yong Wang & Shouguo Peng & Kevin Assogba & Yong Liu & Haizhong Wang & Maozeng Xu & Yinhai Wang, 2018. "Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks," Sustainability, MDPI, vol. 10(5), pages 1-27, April.
    4. Eskandarpour, Majid & Ouelhadj, Djamila & Hatami, Sara & Juan, Angel A. & Khosravi, Banafsheh, 2019. "Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges," European Journal of Operational Research, Elsevier, vol. 277(2), pages 479-491.
    5. Jasmin Grabenschweiger & Fabien Tricoire & Karl F. Doerner, 2018. "Finding the trade-off between emissions and disturbance in an urban context," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 554-591, September.
    6. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    7. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    8. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    9. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    10. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    11. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Economic and environmental concerns in planning recyclable waste collection systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 34-54.
    12. Park, Yang Byung & Koelling, C. Patrick, 1986. "A solution of vehicle routing problems in a multiple objective environment," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 121-132, June.
    13. Barth, Matthew & Boriboonsomsin, Kanok, 2009. "Traffic Congestion and Greenhouse Gases," University of California Transportation Center, Working Papers qt3vz7t3db, University of California Transportation Center.
    14. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    15. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    16. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    4. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    5. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    6. Bayliss, Christopher & Bektaş, Tolga & Tjon-Soei-Len, Vernon & Rohner, Remo, 2023. "Designing a multi-modal and variable-echelon delivery system for last-mile logistics," European Journal of Operational Research, Elsevier, vol. 307(2), pages 645-662.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    3. Miriam Enzi & Sophie N. Parragh & Jakob Puchinger, 2022. "The bi-objective multimodal car-sharing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 307-348, June.
    4. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    5. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    6. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2019. "Multi-Directional Local Search for Sustainable Supply Chain Network Design," Post-Print hal-02407741, HAL.
    7. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    8. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    9. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    10. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.
    11. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    13. Alexandra Anderluh & Rune Larsen & Vera C. Hemmelmayr & Pamela C. Nolz, 2020. "Impact of travel time uncertainties on the solution cost of a two-echelon vehicle routing problem with synchronization," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 806-828, December.
    14. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    15. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    16. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    17. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    18. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    19. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen & Issam Nouaouri, 2022. "A vector evaluated evolutionary algorithm with exploitation reinforcement for the dynamic pollution routing problem," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1011-1038, September.
    20. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:3:p:940-958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.