IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v98y2017icp94-112.html
   My bibliography  Save this article

Multi-objective integration of timetables, vehicle schedules and user routings in a transit network

Author

Listed:
  • Laporte, Gilbert
  • Ortega, Francisco A.
  • Pozo, Miguel A.
  • Puerto, Justo

Abstract

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining an optimal timetable for each line of a transit network by establishing departure and arrival times at each station and allocating a vehicle to each timetable. The current models for the planning of timetables and vehicle schedules use the a priori knowledge of users’ routings. However, the actual route choice of a user depends on the timetable. This paper solves the TNTSP in a public transit network by integrating users’ routings in the model. The proposed formulation guarantees that each user is allocated to the best possible timetable, while satisfying capacity constraints. In addition, we perform a trade-off analysis by means of a multi-objective formulation which jointly optimizes the operator’s and the users’ criteria.

Suggested Citation

  • Laporte, Gilbert & Ortega, Francisco A. & Pozo, Miguel A. & Puerto, Justo, 2017. "Multi-objective integration of timetables, vehicle schedules and user routings in a transit network," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 94-112.
  • Handle: RePEc:eee:transb:v:98:y:2017:i:c:p:94-112
    DOI: 10.1016/j.trb.2016.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515301776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    2. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    3. Gilbert Laporte & Juan Mesa & Francisco Ortega, 1997. "Assessing the efficiency of rapid transit configurations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 95-104, June.
    4. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "Scheduling multimodal transportation systems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 603-615, June.
    5. Juan Mesa & Francisco Ortega & Miguel Pozo, 2014. "Locating optimal timetables and vehicle schedules in a transit line," Annals of Operations Research, Springer, vol. 222(1), pages 439-455, November.
    6. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    7. Hanne L. Petersen & Allan Larsen & Oli B. G. Madsen & Bjørn Petersen & Stefan Ropke, 2013. "The Simultaneous Vehicle Scheduling and Passenger Service Problem," Transportation Science, INFORMS, vol. 47(4), pages 603-616, November.
    8. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    9. Ibarra-Rojas, Omar J. & Giesen, Ricardo & Rios-Solis, Yasmin A., 2014. "An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 35-46.
    10. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Jinjun & Yang, Yifan & Qi, Yong, 2018. "A hybrid algorithm for Urban transit schedule optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 745-755.
    2. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    3. Guido Marseglia & Carlo Maria Medaglia & Francisco A. Ortega & Juan A. Mesa, 2019. "Optimal Alignments for Designing Urban Transport Systems: Application to Seville," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    4. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    5. Dalong Li & Benxing Liu & Fangtong Jiao & Ziwen Song & Pengsheng Zhao & Xiaoqing Wang & Feng Sun, 2022. "Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    6. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    7. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    8. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    9. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    10. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    11. Zhou, Yu & Wang, Yun & Yang, Hai & Yan, Xuedong, 2019. "Last train scheduling for maximizing passenger destination reachability in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 79-95.
    12. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    2. Juan Mesa & Francisco Ortega & Miguel Pozo, 2014. "Locating optimal timetables and vehicle schedules in a transit line," Annals of Operations Research, Springer, vol. 222(1), pages 439-455, November.
    3. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    4. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    5. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    8. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    9. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    10. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    11. Manser, Patrick & Becker, Henrik & Hörl, Sebastian & Axhausen, Kay W., 2020. "Designing a large-scale public transport network using agent-based microsimulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 1-15.
    12. De Borger, Bruno & Fosgerau, Mogens, 2012. "Information provision by regulated public transport companies," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 492-510.
    13. A. de Palma & C. Fontan & O. Mekkaoui, 2000. "Trip Timing for Public Transportation : An Empirical Application," THEMA Working Papers 2000-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    14. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    15. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    16. Wenliang Zhou & Mehdi Oldache, 2021. "Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    17. Sven Jäger & Anita Schöbel, 2020. "The blockwise coordinate descent method for integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 357-381, April.
    18. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    19. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    20. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:98:y:2017:i:c:p:94-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.