IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v58y2013icp58-70.html
   My bibliography  Save this article

A cost-based maritime container assignment model

Author

Listed:
  • Bell, Michael G.H.
  • Liu, Xin
  • Rioult, Jeremy
  • Angeloudis, Panagiotis

Abstract

A recently proposed frequency-based maritime container assignment model (Bell et al., 2011) seeks an assignment of full and empty containers to paths that minimises expected container travel time, whereas containers are in practice more likely to be assigned to minimise expected cost. A cost-based container assignment model is proposed here. It is assumed that routes and service frequencies are given so ship operating costs are also fixed. The objective is to assign containers to routes to minimise container handling costs, container rental and inventory costs. The constraints in the model are extended to include route as well as port capacities. It is shown that the problem remains a linear program. A numerical example is presented to illustrate the properties of the model. The paper concludes by considering the many applications of the proposed maritime container assignment model.

Suggested Citation

  • Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
  • Handle: RePEc:eee:transb:v:58:y:2013:i:c:p:58-70
    DOI: 10.1016/j.trb.2013.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001604
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    2. Dong-Ping Song & Jing-Xin Dong, 2008. "Empty Container Management in Cyclic Shipping Routes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(4), pages 335-361, December.
    3. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    4. Alessandro Olivo & Paola Zuddas & Massimo Di Francesco & Antonio Manca, 2005. "An Operational Model for Empty Container Management," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 7(3), pages 199-222, September.
    5. Mateus Magala & Adrian Sammons, 2008. "A New Approach to Port Choice Modelling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 9-34, March.
    6. Harker, Patrick T. & Friesz, Terry L., 1986. "Prediction of intercity freight flows, I: Theory," Transportation Research Part B: Methodological, Elsevier, vol. 20(2), pages 139-153, April.
    7. de Jong, Gerard & Ben-Akiva, Moshe, 2007. "A micro-simulation model of shipment size and transport chain choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 950-965, November.
    8. Jula, Hossein & Chassiakos, Anastasios & Ioannou, Petros, 2006. "Port dynamic empty container reuse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(1), pages 43-60, January.
    9. Harker, Patrick T. & Friesz, Terry L., 1986. "Prediction of intercity freight flows, II: Mathematical formulations," Transportation Research Part B: Methodological, Elsevier, vol. 20(2), pages 155-174, April.
    10. Bell, Michael G.H. & Liu, Xin & Angeloudis, Panagiotis & Fonzone, Achille & Hosseinloo, Solmaz Haji, 2011. "A frequency-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1152-1161, September.
    11. Choong, Sook Tying & Cole, Michael H. & Kutanoglu, Erhan, 2002. "Empty container management for intermodal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 423-438, November.
    12. Theo E. Notteboom * & Jean-Paul Rodrigue, 2005. "Port regionalization: towards a new phase in port development," Maritime Policy & Management, Taylor & Francis Journals, vol. 32(3), pages 297-313, July.
    13. Li, Jing-An & Leung, Stephen C.H. & Wu, Yue & Liu, Ke, 2007. "Allocation of empty containers between multi-ports," European Journal of Operational Research, Elsevier, vol. 182(1), pages 400-412, October.
    14. Erika Lopez, 2003. "How do ocean carriers organize the empty containers reposition activity in the USA?," Maritime Policy & Management, Taylor & Francis Journals, vol. 30(4), pages 339-355, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Yin & Lee, Loo Hay & Chew, Ek Peng, 2012. "The sample average approximation method for empty container repositioning with uncertainties," European Journal of Operational Research, Elsevier, vol. 222(1), pages 65-75.
    2. Song, Dong-Ping & Dong, Jing-Xin, 2012. "Cargo routing and empty container repositioning in multiple shipping service routes," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1556-1575.
    3. Bell, Michael G.H. & Liu, Xin & Angeloudis, Panagiotis & Fonzone, Achille & Hosseinloo, Solmaz Haji, 2011. "A frequency-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1152-1161, September.
    4. Kolar, Petr & Schramm, Hans-Joachim & Prockl, G√ľnter, 2018. "Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland," Journal of Transport Geography, Elsevier, vol. 69(C), pages 73-82.
    5. Yi Zhao & Qingwan Xue & Xi Zhang, 2018. "Stochastic Empty Container Repositioning Problem with CO 2 Emission Considerations for an Intermodal Transportation System," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-24, November.
    6. Xie, Yangyang & Liang, Xiaoying & Ma, Lijun & Yan, Houmin, 2017. "Empty container management and coordination in intermodal transport," European Journal of Operational Research, Elsevier, vol. 257(1), pages 223-232.
    7. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    8. Hensher, David A. & Teye, Collins, 2019. "Commodity interaction in freight movement models for New South Wales," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Song, Dong-Ping & Dong, Jing-Xin, 2011. "Effectiveness of an empty container repositioning policy with flexible destination ports," Transport Policy, Elsevier, vol. 18(1), pages 92-101, January.
    10. Hjortnaes, T. & Wiegmans, B. & Negenborn, R.R. & Zuidwijk, R.A. & Klijnhout, R., 2017. "Minimizing cost of empty container repositioning in port hinterlands, while taking repair operations into account," Journal of Transport Geography, Elsevier, vol. 58(C), pages 209-219.
    11. Zheng, Jianfeng & Sun, Zhuo & Gao, Ziyou, 2015. "Empty container exchange among liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 158-169.
    12. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.
    13. Zhao, Miyuan & Chow, Joseph Y.J. & Ritchie, Stephen G., 2015. "An inventory-based simulation model for annual-to-daily temporal freight assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 83-101.
    14. Han, Guanghua & Pu, Xujin & He, Zhou & Liu, Cong, 2018. "Integrated planning and allocation: A stochastic dynamic programming approach in container transportation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 264-274.
    15. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    16. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    18. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    19. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    20. Friesz, Terry L. & Suo, Zhong-Gui & Bernstein, David H., 1998. "A dynamic disequilibrium interregional commodity flow model," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 467-483, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:58:y:2013:i:c:p:58-70. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.