IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v58y2013icp154-169.html
   My bibliography  Save this article

A latent segmentation based multiple discrete continuous extreme value model

Author

Listed:
  • Sobhani, Anae
  • Eluru, Naveen
  • Faghih-Imani, Ahmadreza

Abstract

We examine an alternative method to incorporate potential presence of population heterogeneity within the Multiple Discrete Continuous Extreme Value (MDCEV) model structure. Towards this end, an endogenous segmentation approach is proposed that allocates decision makers probabilistically to various segments as a function of exogenous variables. Within each endogenously determined segment, a segment specific MDCEV model is estimated. This approach provides insights on the various population segments present while evaluating distinct choice regimes for each of these segments. The segmentation approach addresses two concerns: (1) ensures that the parameters are estimated employing the full sample for each segment while using all the population records for model estimation, and (2) provides valuable insights on how the exogenous variables affect segmentation. An Expectation–Maximization algorithm is proposed to address the challenges of estimating the resulting endogenous segmentation based econometric model. A prediction procedure to employ the estimated latent MDCEV models for forecasting is also developed. The proposed model is estimated using data from 2009 National Household Travel Survey (NHTS) for the New York region. The results of the model estimates and prediction exercises illustrate the benefits of employing an endogenous segmentation based MDCEV model. The challenges associated with the estimation of latent MDCEV models are also documented.

Suggested Citation

  • Sobhani, Anae & Eluru, Naveen & Faghih-Imani, Ahmadreza, 2013. "A latent segmentation based multiple discrete continuous extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 154-169.
  • Handle: RePEc:eee:transb:v:58:y:2013:i:c:p:154-169
    DOI: 10.1016/j.trb.2013.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    2. von Haefen, Roger H., 2003. "Incorporating observed choice into the construction of welfare measures from random utility models," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 145-165, March.
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    4. Sivaramakrishnan Srinivasan & Chandra Bhat, 2005. "Modeling household interactions in daily in-home and out-of-home maintenance activity participation," Transportation, Springer, vol. 32(5), pages 523-544, September.
    5. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    6. Pinjari, Abdul Rawoof, 2011. "Generalized extreme value (GEV)-based error structures for multiple discrete-continuous choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 474-489, March.
    7. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    8. Kuriyama, Koichi & Michael Hanemann, W. & Hilger, James R., 2010. "A latent segmentation approach to a Kuhn-Tucker model: An application to recreation demand," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 209-220, November.
    9. Daniel J. Phaneuf & Catherine L. Kling & Joseph A. Herriges, 2000. "Estimation and Welfare Calculations in a Generalized Corner Solution Model with an Application to Recreation Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 83-92, February.
    10. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    11. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    12. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
    13. Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
    14. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    15. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    16. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    17. Munger, D. & L’Ecuyer, P. & Bastin, F. & Cirillo, C. & Tuffin, B., 2012. "Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 305-320.
    18. Igal Hendel, 1999. "Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(2), pages 423-446.
    19. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dharmowijoyo, Dimas B.E. & Susilo, Yusak O. & Karlström, Anders & Adiredja, Lili Somantri, 2015. "Collecting a multi-dimensional three-weeks household time-use and activity diary in the Bandung Metropolitan Area, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 231-246.
    2. Hasnat, Md Mehedi & Faghih-Imani, Ahmadreza & Eluru, Naveen & Hasan, Samiul, 2019. "Destination choice modeling using location-based social media data," Journal of choice modelling, Elsevier, vol. 31(C), pages 22-34.
    3. Ahmadreza Faghih-Imani & Naveen Eluru, 2020. "A finite mixture modeling approach to examine New York City bicycle sharing system (CitiBike) users’ destination preferences," Transportation, Springer, vol. 47(2), pages 529-553, April.
    4. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    5. Shobhit Saxena & Abdul Rawoof Pinjari & Chandra R. Bhat & Aupal Mondal, 2024. "A flexible multiple discrete–continuous probit (MDCP) model: application to analysis of expenditure patterns of domestic tourists in India," Transportation, Springer, vol. 51(4), pages 1299-1326, August.
    6. Ziqi Zhang & Zhi Qiu, 2020. "Exploring Daily Activity Patterns on the Typical Day of Older Adults for Supporting Aging-in-Place in China’s Rural Environment," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    7. Sabreena Anowar & Shamsunnahar Yasmin & Naveen Eluru & Luis Miranda-Moreno, 2014. "Analyzing car ownership in Quebec City: a comparison of traditional and latent class ordered and unordered models," Transportation, Springer, vol. 41(5), pages 1013-1039, September.
    8. Annesha Enam & Karthik C. Konduri & Naveen Eluru & Srinath Ravulaparthy, 2018. "Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey," Transportation, Springer, vol. 45(6), pages 1783-1810, November.
    9. Fatmi, Mahmudur Rahman & Chowdhury, Subeh & Habib, Muhammad Ahsanul, 2017. "Life history-oriented residential location choice model: A stress-based two-tier panel modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 293-307.
    10. Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
    11. Saxena, Shobhit & Pinjari, Abdul Rawoof & Roy, Ananya & Paleti, Rajesh, 2021. "Multiple discrete-continuous choice models with bounds on consumptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 237-265.
    12. Keya, Nowreen & Anowar, Sabreena & Bhowmik, Tanmoy & Eluru, Naveen, 2021. "A joint framework for modeling freight mode and destination choice: Application to the US commodity flow survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    13. Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    2. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    3. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    4. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    5. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    6. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
    7. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    8. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    9. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    10. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    11. Shasha Liu & Toshiyuki Yamamoto & Enjian Yao, 2023. "Joint modeling of mode choice and travel distance with intra-household interactions," Transportation, Springer, vol. 50(5), pages 1527-1552, October.
    12. Richards, Timothy J. & Gómez, Miguel I. & Pofahl, Geoffrey, 2012. "A Multiple-discrete/Continuous Model of Price Promotion," Journal of Retailing, Elsevier, vol. 88(2), pages 206-225.
    13. Hanemann, Michael & Labandeira, Xavier & Labeaga, José M. & Vásquez-Lavín, Felipe, 2024. "Discrete-continuous models of residential energy demand: A comprehensive review," Resource and Energy Economics, Elsevier, vol. 77(C).
    14. Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.
    15. Richards, Timothy J. & Mancino, Lisa, 2012. "Demand for Food Away from Home: A Multiple Discrete/Continuous Extreme Value Model," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 127103, International Association of Agricultural Economists.
    16. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    17. Kidokoro, Yukihiro, 2016. "A micro foundation for discrete choice models with multiple categories of goods," Journal of choice modelling, Elsevier, vol. 19(C), pages 54-72.
    18. Kim, Chul & Smith, Adam N. & Kim, Jaehwan & Allenby, Greg M., 2023. "Outside good utility and substitution patterns in direct utility models," Journal of choice modelling, Elsevier, vol. 49(C).
    19. Dr. Timothy J. Richards, 2015. "A Shameless Pitch for Quantitative Marketing," Agribusiness, John Wiley & Sons, Ltd., vol. 31(4), pages 564-567, October.
    20. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:58:y:2013:i:c:p:154-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.