IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v34y2000i6p533-545.html
   My bibliography  Save this article

A game theory approach to measuring the performance reliability of transport networks

Author

Listed:
  • Bell, Michael G. H.

Abstract

Establishing the performance reliability of a transport network is an important practical problem for engineers and planners involved in network design. Methods proposed hitherto have assumed knowledge of link performance frequency distributions (usually delay, travel time or capacity distributions), information that is in many cases absent. In this paper, a two-player non-cooperative game is envisaged between on the one hand the network user seeking a path to minimise the expected trip cost and on the other hand an "evil entity" choosing link performance scenarios to maximise the expected trip cost. At the Nash mixed strategy equilibrium, the user is unable to reduce the expected trip cost by changing his path choice probabilities while the evil entity is unable to increase the expected trip cost by changing the scenario probabilities, without cooperating. The Nash equilibrium measures network performance when users are extremely pessimistic about the state of the network and may therefore be used as a basis for a cautious approach to network design.

Suggested Citation

  • Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
  • Handle: RePEc:eee:transb:v:34:y:2000:i:6:p:533-545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00042-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    2. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    3. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    4. Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
    5. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2002. "Reliability evaluation for airline network design in response to fluctuation in passenger demand," Omega, Elsevier, vol. 30(3), pages 197-213, June.
    6. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    7. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    8. Federico Rupi & Silvia Bernardi & Guido Rossi & Antonio Danesi, 2015. "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, Springer, vol. 15(2), pages 397-411, June.
    9. Ponlathep Lertworawanich, 2012. "Highway network restoration after the great flood in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 873-886, October.
    10. PeCoy, Michael D. & Redmond, Michael A., 2023. "Flight reliability during periods of high uncertainty," Journal of Air Transport Management, Elsevier, vol. 106(C).
    11. Connors, Richard D. & Sumalee, Agachai & Watling, David P., 2007. "Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 593-615, July.
    12. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    13. Gopal R. Patil & B. K. Bhavathrathan, 2016. "Effect Of Traffic Demand Variation On Road Network Resilience," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-18, February.
    14. Nagae, Takeshi & Fujihara, Tomo & Asakura, Yasuo, 2012. "Anti-seismic reinforcement strategy for an urban road network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 813-827.
    15. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    16. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    17. Leng Jun-qiang & Yang Long-hai & Wei-yi Liu & Lin Zhao, 2017. "Measuring Road Network Vulnerability with Sensitivity Analysis," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
    18. Lertworawanich, Ponlathep & Dechasakulsom, Montri & Aursudkij, Bhanitiz, 2012. "Highway network restoration after disasters," 53rd Annual Transportation Research Forum, Tampa, Florida, March 15-17, 2012 207120, Transportation Research Forum.
    19. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    20. Agachai Sumalee & Fumitaka Kurauchi, 2006. "Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster," Networks and Spatial Economics, Springer, vol. 6(3), pages 205-219, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:34:y:2000:i:6:p:533-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.