IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v118y2018icp263-280.html
   My bibliography  Save this article

A quantum cognition model for bridging stated and revealed preference

Author

Listed:
  • Yu, Jiangbo Gabriel
  • Jayakrishnan, R.

Abstract

Despite increasingly abundant data on revealed travel behaviors, stated preference surveys still play an indispensable role in analyzing and predicting human behaviors in hypothetical scenarios. Recent needs for forecasting travel behaviors in the era of autonomous vehicles and more prevalent sharing economy are examples. However, it is well known that the framing effect in surveys could be significant when asking the same question with different modes, instruments, and wordings. Moreover, systematic deviation is observed when stated preference and revealed preference are compared, per a growing body of studies, due to the framing effect, the change of decision context, and the altered mental states of participants. These situations resemble two prevalent quantum phenomena – measurement influences the state of a system, and different observation sequences on a system render different results. This paper proposes a quantum cognition model consistent with quantum logic and demonstrates its usefulness in the quantitative study of stated and revealed preference. Examples show how to calibrate the model and forecast revealed preference when only stated preference is available. Although the proposed model is not limited to the number of questions, the examples focus on single-question scenarios. This paper takes a utilitarian perspective on quantum mechanics and demonstrates how it could improve survey designs and prediction on revealed preference.

Suggested Citation

  • Yu, Jiangbo Gabriel & Jayakrishnan, R., 2018. "A quantum cognition model for bridging stated and revealed preference," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 263-280.
  • Handle: RePEc:eee:transb:v:118:y:2018:i:c:p:263-280
    DOI: 10.1016/j.trb.2018.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518302546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hensher, David A., 2010. "Hypothetical bias, choice experiments and willingness to pay," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 735-752, July.
    2. Brownstone, David & Small, Kenneth A., 2005. "Valuing time and reliability: assessing the evidence from road pricing demonstrations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 279-293, May.
    3. Hameroff, Stuart & Penrose, Roger, 1996. "Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 40(3), pages 453-480.
    4. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    5. Karen Blumenschein & Glenn C. Blomquist & Magnus Johannesson & Nancy Horn & Patricia Freeman, 2008. "Eliciting Willingness to Pay Without Bias: Evidence from a Field Experiment," Economic Journal, Royal Economic Society, vol. 118(525), pages 114-137, January.
    6. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    7. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    8. Jérôme Busemeyer & Ariane Lambert-Mogiliansky & Zheng Wang, 2009. "Empirical Comparison of Markov and Quantum models of decision-making," Post-Print halshs-00754332, HAL.
    9. Jérôme Busemeyer & Ariane Lambert-Mogiliansky & Zheng Wang, 2009. "Empirical Comparison of Markov and Quantum models of decision-making," PSE-Ecole d'économie de Paris (Postprint) halshs-00754332, HAL.
    10. Peter Stopher & Camden FitzGerald & Min Xu, 2007. "Assessing the accuracy of the Sydney Household Travel Survey with GPS," Transportation, Springer, vol. 34(6), pages 723-741, November.
    11. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    12. Guo, Xiaolei & Liu, Henry X., 2011. "Bounded rationality and irreversible network change," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1606-1618.
    13. Carrington, Michal J. & Neville, Benjamin A. & Whitwell, Gregory J., 2014. "Lost in translation: Exploring the ethical consumer intention–behavior gap," Journal of Business Research, Elsevier, vol. 67(1), pages 2759-2767.
    14. Tversky, Amos & Kahneman, Daniel, 1986. "Rational Choice and the Framing of Decisions," The Journal of Business, University of Chicago Press, vol. 59(4), pages 251-278, October.
    15. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Behavioural effects of a tradable driving credit scheme: Results of an online stated adaptation experiment in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 52-64.
    16. Fujii, Satoshi & Gärling, Tommy, 2003. "Application of attitude theory for improved predictive accuracy of stated preference methods in travel demand analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 389-402, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    2. Jingmei Xiao & Mei Cai & Yu Gao, 2022. "A VIKOR-Based Linguistic Multi-Attribute Group Decision-Making Model in a Quantum Decision Scenario," Mathematics, MDPI, vol. 10(13), pages 1-23, June.
    3. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    2. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    3. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    4. Khrennikova, Polina, 2016. "Application of quantum master equation for long-term prognosis of asset-prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 253-263.
    5. Fifer, Simon & Rose, John M., 2016. "Can you ever be certain? Reducing hypothetical bias in stated choice experiments via respondent reported choice certaintyAuthor-Name: Beck, Matthew J," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 149-167.
    6. Ashtiani, Mehrdad & Azgomi, Mohammad Abdollahi, 2015. "A survey of quantum-like approaches to decision making and cognition," Mathematical Social Sciences, Elsevier, vol. 75(C), pages 49-80.
    7. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Consistently inconsistent: The role of certainty, acceptability and scale in choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 81-93.
    8. Fifer, Simon & Rose, John & Greaves, Stephen, 2014. "Hypothetical bias in Stated Choice Experiments: Is it a problem? And if so, how do we deal with it?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 164-177.
    9. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    10. Lars Hultkrantz & Selen Savsin, 2018. "Is ‘referencing’ a remedy to hypothetical bias in value of time elicitation? Evidence from economic experiments," Transportation, Springer, vol. 45(6), pages 1827-1847, November.
    11. Roy Brouwer & Solomon Tarfasa, 2020. "Testing hypothetical bias in a framed field experiment," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(3), pages 343-357, September.
    12. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    13. Giuseppe Pernagallo & Benedetto Torrisi, 2020. "A theory of information overload applied to perfectly efficient financial markets," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
    14. Andreas Wichert, 2021. "Quantum-Like Sampling," Mathematics, MDPI, vol. 9(17), pages 1-11, August.
    15. Schilirò, Daniele & Graziano, Mario, 2011. "Scelte e razionalità nei modelli economici: un'analisi multidisciplinare [Choices and rationality in economic models: a multidisciplinary analysis]," MPRA Paper 31910, University Library of Munich, Germany.
    16. Rong-Chang Jou & David A. Hensher & Yu-Hsin Liu & Ching-Shu Chiu, 2010. "Urban Commuters’ Mode-switching Behaviour in Taipai, with an Application of the Bounded Rationality Principle," Urban Studies, Urban Studies Journal Limited, vol. 47(3), pages 650-665, March.
    17. Richard T. Carson & Miko_aj Czajkowski, 2014. "The discrete choice experiment approach to environmental contingent valuation," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 9, pages 202-235, Edward Elgar Publishing.
    18. Boyer-Kassem, Thomas & Duchêne, Sébastien & Guerci, Eric, 2016. "Testing quantum-like models of judgment for question order effect," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 33-46.
    19. Andrea Morone & Francesco Nemore & Simone Nuzzo, 2018. "Experimental evidence on tax salience and tax incidence," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(4), pages 582-612, August.
    20. Ng, Yew-Kwang & Wang, Jianguo, 2001. "Attitude choice, economic change, and welfare," Journal of Economic Behavior & Organization, Elsevier, vol. 45(3), pages 279-291, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:118:y:2018:i:c:p:263-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.