IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v112y2018icp73-88.html
   My bibliography  Save this article

Detecting pattern changes in individual travel behavior: A Bayesian approach

Author

Listed:
  • Zhao, Zhan
  • Koutsopoulos, Haris N.
  • Zhao, Jinhua

Abstract

Although stable in the short term, individual travel patterns are subject to changes in the long term. The ability to detect such changes is critical for developing behavior models that are adaptive over time. We define travel pattern changes as “abrupt, substantial, and persistent changes in the underlying patterns of travel behavior” and develop a methodology to detect such changes in individual travel patterns. We specify one distribution for each of the three dimensions of travel behavior (the frequency of travel, time of travel, and origins/destinations), and interpret the change of the parameters of the distributions as indicating the occurrence of a pattern change. A Bayesian method is developed to estimate the probability that a pattern change occurs at any given time for each behavior dimension. The proposed methodology is tested using pseudonymized smart card records of 3210 users from London, U.K. over two years. The results show that the method can successfully identify significant changepoints in travel patterns. Compared to the traditional generalized likelihood ratio (GLR) approach, the Bayesian method requires less predefined parameters and is more robust. The methodology presented in this paper is generalizable and can be applied to detect changes in other aspects of travel behavior and human behavior in general.

Suggested Citation

  • Zhao, Zhan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2018. "Detecting pattern changes in individual travel behavior: A Bayesian approach," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 73-88.
  • Handle: RePEc:eee:transb:v:112:y:2018:i:c:p:73-88
    DOI: 10.1016/j.trb.2018.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518300651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Goulias, Konstadinos G., 1999. "Longitudinal analysis of activity and travel pattern dynamics using generalized mixed Markov latent class models," Transportation Research Part B: Methodological, Elsevier, vol. 33(8), pages 535-558, November.
    3. Theo Arentze & Harry Timmermans, 2008. "Social Networks, Social Interactions, and Activity-Travel Behavior: A Framework for Microsimulation," Environment and Planning B, , vol. 35(6), pages 1012-1027, December.
    4. Xinyu Cao & Patricia Mokhtarian & Susan Handy, 2007. "Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach," Transportation, Springer, vol. 34(5), pages 535-556, September.
    5. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    6. Meyer, Michael D., 1999. "Demand management as an element of transportation policy: using carrots and sticks to influence travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 575-599.
    7. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    8. Kitamura, Ryuichi & Yamamoto, Toshiyuki & Fujii, Satoshi, 2003. "The effectiveness of panels in detecting changes in discrete travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 191-206, February.
    9. Albert, Gila & Mahalel, David, 2006. "Congestion tolls and parking fees: A comparison of the potential effect on travel behavior," Transport Policy, Elsevier, vol. 13(6), pages 496-502, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Sun & Xinyu Chen & Zhaocheng He & Luis F. Miranda-Moreno, 2023. "Routine Pattern Discovery and Anomaly Detection in Individual Travel Behavior," Networks and Spatial Economics, Springer, vol. 23(2), pages 407-428, June.
    2. María Vega-Gonzalo & Panayotis Christidis, 2022. "Fair Models for Impartial Policies: Controlling Algorithmic Bias in Transport Behavioural Modelling," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    3. Lin, Yuqian & Xu, Yang & Zhao, Zhan & Tu, Wei & Park, Sangwon & Li, Qingquan, 2024. "Assessing effects of pandemic-related policies on individual public transit travel patterns: A Bayesian online changepoint detection based framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Chen, Ruoyu & Zhou, Jiangping, 2022. "Fare adjustment’s impacts on travel patterns and farebox revenue: An empirical study based on longitudinal smartcard data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 111-133.
    5. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
    6. Krause, Cory M. & Zhang, Lei, 2019. "Short-term travel behavior prediction with GPS, land use, and point of interest data," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 349-361.
    7. Chen, Xian & Bai, Shuotian & Wei, Yongqin & Zhao, Yanhui & Yan, Peng & Jiang, Hai, 2023. "Passenger engagement dynamics in ride-hailing services: A heterogeneous hidden Markov approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tao & Wang, Donggen & Zhou, Meng, 2018. "Residential relocation and changes in travel behavior: what is the role of social context change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 360-374.
    2. Maness, Michael & Cirillo, Cinzia & Dugundji, Elenna R., 2015. "Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior," Journal of Transport Geography, Elsevier, vol. 46(C), pages 137-150.
    3. Yen, Barbara T.H. & Mulley, Corinne & Meza, Gerardo, 2023. "Understanding the potential policy transfer of gamification schemes for behaviour change in public transport and road safety," Research in Transportation Economics, Elsevier, vol. 99(C).
    4. Siqi Song & Chen-Chieh Feng & Mi Diao, 2020. "Vehicle quota control, transport infrastructure investment and vehicle travel: A pseudo panel analysis," Urban Studies, Urban Studies Journal Limited, vol. 57(12), pages 2527-2546, September.
    5. Olaru, Doina & Smith, Brett & Taplin, John H.E., 2011. "Residential location and transit-oriented development in a new rail corridor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 219-237, March.
    6. Coogan, Matthew A. & Adler, Thomas & Karash, Karla, 2012. "The paths from walk preference to walk behavior: Applying latent factors in structural equation modeling," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 68-82.
    7. Felix Haifeng Liao & Steven Farber & Reid Ewing, 2015. "Compact development and preference heterogeneity in residential location choice behaviour: A latent class analysis," Urban Studies, Urban Studies Journal Limited, vol. 52(2), pages 314-337, February.
    8. Lisa Döring & Maarten Kroesen & Christian Holz-Rau, 2019. "The role of parents’ mobility behavior for dynamics in car availability and commute mode use," Transportation, Springer, vol. 46(3), pages 957-994, June.
    9. Fabio Grazi & Jeroen C.J.M. van den Bergh & Jos N. van Ommeren, 2008. "An Empirical Analysis of Urban Form, Transport, and Global Warming," The Energy Journal, , vol. 29(4), pages 97-122, October.
    10. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    11. Russell B. Williams & Natasa Slak-Valek, 2019. "Pokémon GO is serious leisure that increases the touristic engagement, physical activity and sense of happiness of players," Information Technology & Tourism, Springer, vol. 21(4), pages 515-533, December.
    12. Marina Lagune-Reutler & Andrew Guthrie & Yingling Fan & David Levinson, 2015. "Transit Riders' Perception of Waiting Time and Stops' Surrounding Environments," Working Papers 000142, University of Minnesota: Nexus Research Group.
    13. Schwanen, Tim, 2020. "Towards decolonial human subjects in research on transport," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    15. Dickinson, David & Liu, Jia, 2007. "The real effects of monetary policy in China: An empirical analysis," China Economic Review, Elsevier, vol. 18(1), pages 87-111.
    16. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    17. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    18. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    19. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    20. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:112:y:2018:i:c:p:73-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.