IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v69y2014icp58-70.html
   My bibliography  Save this article

Identification of freeway crash-prone traffic conditions for traffic flow at different levels of service

Author

Listed:
  • Xu, Chengcheng
  • Liu, Pan
  • Wang, Wei
  • Li, Zhibin

Abstract

The primary objective of this study was to evaluate the risks of crashes associated with the freeway traffic flow operating at various levels of service (LOS) and to identify crash-prone traffic conditions for each LOS. The results showed that the traffic flow operating at LOS E had the highest crash potential, followed by LOS F and D. The traffic flow operating at LOS B and A had the lowest crash potential. For LOS A and B, the vehicle platoon and abrupt change in vehicle speeds were major contributing factors to crash occurrences. For LOS C, crash risks were correlated with lane-change maneuvers, speed variation, and small headways in traffic. For LOS D, crash risks increased with an increase in the temporal change in traffic flow variables and the frequency of lane-change maneuvers. For LOS E, crash risks were mainly affected by high traffic volumes and oscillating traffic conditions. For LOS F, crash risks increased with an increase in the standard deviation of flow rate and the frequency of lane-change maneuvers. The findings suggested that the mechanism of crashes were quite different across various LOS. A Bayesian random-parameters logistic regression model was developed to identify crash-prone traffic conditions for various LOS. The proposed model significantly improved the prediction performance as compared to the conventional logistic regression model.

Suggested Citation

  • Xu, Chengcheng & Liu, Pan & Wang, Wei & Li, Zhibin, 2014. "Identification of freeway crash-prone traffic conditions for traffic flow at different levels of service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 58-70.
  • Handle: RePEc:eee:transa:v:69:y:2014:i:c:p:58-70
    DOI: 10.1016/j.tra.2014.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414001918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coifman, Benjamin, 2003. "Estimating density and lane inflow on a freeway segment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 689-701, October.
    2. Golob, Thomas F. & Recker, Wilfred W., 2004. "A method for relating type of crash to traffic flow characteristics on urban freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 53-80, January.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Jagtman, H.M. & Hale, A.R. & Heijer, T., 2006. "Ex ante assessment of safety issues of new technologies in transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 459-474, July.
    5. Melachrinoudis, Emanuel & Kozanidis, George, 2002. "A mixed integer knapsack model for allocating funds to highway safety improvements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 789-803, November.
    6. Wu, Ning, 2002. "A new approach for modeling of Fundamental Diagrams," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 867-884, December.
    7. Weijermars, Wendy & Wesemann, Paul, 2013. "Road safety forecasting and ex-ante evaluation of policy in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 52(C), pages 64-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuntao Shi & Ye Li & Qing Cai & Hao Zhang & Dan Wu, 2020. "How Does Heterogeneity Affect Freeway Safety? A Simulation-Based Exploration Considering Sustainable Intelligent Connected Vehicles," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    2. Yang, Yang & He, Kun & Wang, Yun-peng & Yuan, Zhen-zhou & Yin, Yong-hao & Guo, Man-ze, 2022. "Identification of dynamic traffic crash risk for cross-area freeways based on statistical and machine learning methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    3. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    9. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    15. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    16. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    17. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    18. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    20. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:69:y:2014:i:c:p:58-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.