IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v119y2019icp82-95.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Prospects of cold ironing as an emissions reduction option

Author

Listed:
  • Zis, Thalis P.V.

Abstract

Cold ironing is the process of providing shorepower to cover the energy demands of ships calling at ports. This technological solution can eliminate the emissions of auxiliary engines at berth, resulting in a global reduction of emissions if the grid powering the ships is an environmentally friendly energy source. This paper conducts a literature review of recent academic work in the field and presents the status of this technology worldwide and the current barriers for its further implementation. The use of cold ironing is mandatory in Californian ports for ship operators and as a result terminal and ship operators were required to invest in this technology. In Europe, all ports will be required to have cold ironing provision by the end of 2025. Other regulations that target local emissions such as Emission Control Areas can have a significant impact on whether cold ironing is used in the future as a potential compliance solution. This paper constructs a quantitative framework for the examination of the technology considering all stakeholders. The role of regulation is shown to be critical for the further adoption of this technology. Illustrative case studies are presented that consider the perspective of ship operators of various ship types, and terminal operators that opt to invest in shorepower facilities. The results of the case studies show that for medium and high fuel price scenarios there is economic motivation for ship operators to use cold ironing. For the port, the cost per abated ton of pollutants is much lower than current estimates of the external costs of pollutants. Therefore, shorepower may be a viable emissions reduction option for the maritime sector, provided that regulatory bodies assist the further adoption of the technology from ship operators and ports. The methodology can be useful to port and ship operators in examining the benefits of using cold ironing as an emissions reduction action.

Suggested Citation

  • Zis, Thalis P.V., 2019. "Prospects of cold ironing as an emissions reduction option," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 82-95.
  • Handle: RePEc:eee:transa:v:119:y:2019:i:c:p:82-95
    DOI: 10.1016/j.tra.2018.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418303264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tichavska, Miluše & Tovar, Beatriz, 2015. "Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 347-360.
    2. Thalis Zis & Robin Jacob North & Panagiotis Angeloudis & Washington Yotto Ochieng & Michael Geoffrey Harrison Bell, 2014. "Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(4), pages 371-398, December.
    3. Giulia Arduino & David G. Carrillo Murillo & David G. Claudio Ferrari, 2011. "Key factors and barriers to the adoption of cold ironing in europe," Working Papers 11_15, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2011.
    4. Johnson, Hannes & Styhre, Linda, 2015. "Increased energy efficiency in short sea shipping through decreased time in port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 167-178.
    5. Tongzon, Jose & Heng, Wu, 2005. "Port privatization, efficiency and competitiveness: Some empirical evidence from container ports (terminals)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 405-424, June.
    6. Yeo, Gi-Tae & Roe, Michael & Dinwoodie, John, 2008. "Evaluating the competitiveness of container ports in Korea and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 910-921, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    2. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    3. Vichos, Emmanouil & Sifakis, Nikolaos & Tsoutsos, Theocharis, 2022. "Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports," Energy, Elsevier, vol. 241(C).
    4. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    5. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    8. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2021. "Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Monios, Jason & Ng, Adolf K.Y., 2021. "Competing institutional logics and institutional erosion in environmental governance of maritime transport," Journal of Transport Geography, Elsevier, vol. 94(C).
    10. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    11. Carlos A. Reusser & Joel R. Pérez, 2020. "Evaluation of the Emission Impact of Cold-Ironing Power Systems, Using a Bi-Directional Power Flow Control Strategy," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    12. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    13. Eleftherios Sdoukopoulos & Maria Boile & Alkiviadis Tromaras & Nikolaos Anastasiadis, 2019. "Energy Efficiency in European Ports: State-Of-Practice and Insights on the Way Forward," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    14. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    15. Sahar Azarkamand & Alsnosy Balbaa & Christopher Wooldridge & Rosa Mari Darbra, 2020. "Climate Change—Challenges and Response Options for the Port Sector," Sustainability, MDPI, vol. 12(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Junghyun & Lee, Hee Yong & Dinwoodie, John, 2015. "Competitiveness of container terminal operating companies in South Korea and the industry–university–government network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 1-14.
    2. Jindong Qin & Yingying Liang & Luis Martinez & Alessio Ishizaka & Witold Pedrycz, 2023. "ORESTE-SORT: a novel multiple criteria sorting method for sorting port group competitiveness," Annals of Operations Research, Springer, vol. 325(2), pages 875-909, June.
    3. Seo, Young-Joon & Park, Jin Suk, 2016. "The estimation of minimum efficient scale of the port industry," Transport Policy, Elsevier, vol. 49(C), pages 168-175.
    4. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    5. Kammoun, Rabeb & Abdennadher, Chokri, 2022. "Seaport efficiency and competitiveness in European seaports," Transport Policy, Elsevier, vol. 121(C), pages 113-124.
    6. Hui-Huang Tai & Yun-Hua Chang, 2022. "Reducing pollutant emissions from vessel maneuvering in port areas," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 651-671, September.
    7. Peng, Peng & Yang, Yu & Lu, Feng & Cheng, Shifen & Mou, Naixia & Yang, Ren, 2018. "Modelling the competitiveness of the ports along the Maritime Silk Road with big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 852-867.
    8. Yuen, Chi-lok Andrew & Zhang, Anming & Cheung, Waiman, 2012. "Port competitiveness from the users' perspective: An analysis of major container ports in China and its neighboring countries," Research in Transportation Economics, Elsevier, vol. 35(1), pages 34-40.
    9. Low, Joyce M.W. & Lam, Shao Wei & Tang, Loon Ching, 2009. "Assessment of hub status among Asian ports from a network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(6), pages 593-606, July.
    10. Song, Dong-Ping & Lyons, Andrew & Li, Dong & Sharifi, Hossein, 2016. "Modeling port competition from a transport chain perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 75-96.
    11. Madeira, Armando Gonçalves & Cardoso, Moacyr Machado & Belderrain, Mischel Carmen Neyra & Correia, Anderson Ribeiro & Schwanz, Silvia Helena, 2012. "Multicriteria and multivariate analysis for port performance evaluation," International Journal of Production Economics, Elsevier, vol. 140(1), pages 450-456.
    12. Lee, Choong Bae & Wan, Junbin & Shi, Wenming & Li, Kevin, 2014. "A cross-country study of competitiveness of the shipping industry," Transport Policy, Elsevier, vol. 35(C), pages 366-376.
    13. Feng, Mingxiang & Shaw, Shih-Lung & Peng, Guojun & Fang, Zhixiang, 2020. "Time efficiency assessment of ship movements in maritime ports: A case study of two ports based on AIS data," Journal of Transport Geography, Elsevier, vol. 86(C).
    14. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    15. Marasco, Addolorata & Romano, Alessandro, 2018. "Inter-port interactions in the Le Havre-Hamburg range: A scenario analysis using a nonautonomous Lotka Volterra model," Journal of Transport Geography, Elsevier, vol. 69(C), pages 207-220.
    16. Natalia Wagner & Izabela Kotowska & Michał Pluciński, 2022. "The Impact of Improving the Quality of the Port’s Infrastructure on the Shippers’ Decisions," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    17. Julián Martínez Moya & María Feo Valero, 2017. "Port choice in container market: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 300-321, May.
    18. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    19. Moreira, Paulo Pires, 2012. "A Análise De Sines Como Ativo Geoestratégico Nacional: Um Cluster Suportado Nas Redes Marítimas Mundiais [The Analysis of Sines as a Geostrategic Asset: A Cluster Supported in the Maritime Chain]," MPRA Paper 47694, University Library of Munich, Germany, revised 04 Oct 2012.
    20. Guerrero C., Alejandro & Rivera T., César, 2009. "Mexico: total productivity changes at the principal container ports," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:119:y:2019:i:c:p:82-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.