IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v76y2009i4p278-284.html
   My bibliography  Save this article

Investigating the role of enemies in temporal dynamics: Differential sensitivity, competition and stable coexistence

Author

Listed:
  • Kelly, Colleen K.
  • Bowler, Michael G.

Abstract

The impact of herbivores and other pests on plants varies greatly from year to year. Here we develop an analytical model of a temporal niche dynamic as a tool to examine how natural fluctuations in pest (enemy) levels may determine coexistence in competing annual plant species when one but not the other is affected by the pest. We show that the probability and speed with which the resistant drives out the sensitive species, coexists with it, or is driven out by its sensitive competitor depends on the cost of pest-resistance to the unaffected species, the frequency of high pest levels in the habitat and the competitive advantage of the sensitive species when the pest is not actively present. The interaction is regulated primarily by pest impact on relative seedling survival of the two, with relative yield per capita of seeds viable into the following season (effective fecundity) the next most vulnerable life-cycle stage.

Suggested Citation

  • Kelly, Colleen K. & Bowler, Michael G., 2009. "Investigating the role of enemies in temporal dynamics: Differential sensitivity, competition and stable coexistence," Theoretical Population Biology, Elsevier, vol. 76(4), pages 278-284.
  • Handle: RePEc:eee:thpobi:v:76:y:2009:i:4:p:278-284
    DOI: 10.1016/j.tpb.2009.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909001014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Chesson & Jessica J. Kuang, 2008. "The interaction between predation and competition," Nature, Nature, vol. 456(7219), pages 235-238, November.
    2. A. R. Kraaijeveld & H. C. J. Godfray, 1997. "Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster," Nature, Nature, vol. 389(6648), pages 278-280, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    2. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rousselière, Damien & Joly, Iragäel, 2011. "A propos de la capacité à survivre des coopératives : une étude de la relation entre âge et mortalité des organisations coopératives agricoles françaises," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 92(3).
    2. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Stump, Simon Maccracken & Chesson, Peter, 2015. "Distance-responsive predation is not necessary for the Janzen–Connell hypothesis," Theoretical Population Biology, Elsevier, vol. 106(C), pages 60-70.
    5. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    6. Ammunét, Tea & Klemola, Tero & Parvinen, Kalle, 2014. "Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach," Theoretical Population Biology, Elsevier, vol. 92(C), pages 107-117.
    7. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    8. Israel Pagán & Carlos Alonso-Blanco & Fernando García-Arenal, 2009. "Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana," PLOS Pathogens, Public Library of Science, vol. 5(7), pages 1-10, July.
    9. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    10. Arancio, Marc & Sourisseau, Marc & Souissi, Sami, 2014. "Processes leading to the coexistence of a host and its parasitoid in homogeneous environments: The role of an infected dormant stage," Ecological Modelling, Elsevier, vol. 279(C), pages 78-88.
    11. Malard, Julien & Adamowski, Jan & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Melgar-Quiñonez, Hugo, 2020. "Modelling predation: Theoretical criteria and empirical evaluation of functional form equations for predator-prey systems," Ecological Modelling, Elsevier, vol. 437(C).
    12. Alexei Romanioukha & Arseniy S. Karkach & James R. Carey & Anatoli I. Yashin, 2010. "Adaptive trade-off in C. capitata is a characteristic feature of the long-lived subpopulation," MPIDR Working Papers WP-2010-019, Max Planck Institute for Demographic Research, Rostock, Germany.
    13. Beatriz Acuña Hidalgo & Luís M. Silva & Mathias Franz & Roland R. Regoes & Sophie A. O. Armitage, 2022. "Decomposing virulence to understand bacterial clearance in persistent infections," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    15. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.
    16. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    17. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:76:y:2009:i:4:p:278-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.