IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v84y2013icp56-71.html
   My bibliography  Save this article

Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities

Author

Listed:
  • Mathias, Andrea
  • Chesson, Peter

Abstract

It is well established theoretically that competing species may coexist by having different responses to variation over time in the physical environment. Whereas previous theory has focused mostly on year-to-year environmental variation, we investigate how within-year variation can be the basis of species coexistence. We ask also the important but often neglected question of whether the species differences that allow coexistence are compatible with evolutionary processes. We seek the simplest circumstances that permit coexistence based on within-year environmental variation, and then evaluate the robustness of coexistence in the face of evolutionary forces. Our focus is on coexistence of annual plant species living in arid regions. We first consider environmental variation of a very simple structure where a single pulse of rain occurs, and different species have different patterns of growth activity following the rain pulse. We show that coexistence of two species is possible based on the storage effect coexistence mechanism in this simplest of varying environments. We find an exact expression for the magnitude of the storage effect that allows the functioning of the coexistence mechanism to be analyzed. However, in these simplest of circumstances, coexistence in our models is not evolutionarily stable. Increasing the complexity of the environment to two rain pulses leads to evolutionarily stable species coexistence, and a route to diversity via evolutionary branching. This demonstration of the compatibility of a coexistence mechanism with evolutionary processes is an important step in assessing the likely importance of a mechanism in nature.

Suggested Citation

  • Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
  • Handle: RePEc:eee:thpobi:v:84:y:2013:i:c:p:56-71
    DOI: 10.1016/j.tpb.2012.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912001256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Colleen K. & Bowler, Michael G., 2009. "Investigating the role of enemies in temporal dynamics: Differential sensitivity, competition and stable coexistence," Theoretical Population Biology, Elsevier, vol. 76(4), pages 278-284.
    2. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    3. Colleen K. Kelly & Michael G. Bowler, 2002. "Coexistence and relative abundance in forest trees," Nature, Nature, vol. 417(6887), pages 437-440, May.
    4. Kang, Yun & Chesson, Peter, 2010. "Relative nonlinearity and permanence," Theoretical Population Biology, Elsevier, vol. 78(1), pages 26-35.
    5. Nurmi, Tuomas & Parvinen, Kalle, 2008. "On the evolution of specialization with a mechanistic underpinning in structured metapopulations," Theoretical Population Biology, Elsevier, vol. 73(2), pages 222-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Zhi-Quan & Liu, Tong & Sun, QinMing & Li, Ru & Xie, Jiang-Bo & Li, Bai-Lian, 2014. "Application of compound interest laws in biology: Reunification of existing models to develop seed bank dynamics model of annual plants," Ecological Modelling, Elsevier, vol. 278(C), pages 67-73.
    2. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
    3. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    4. Kortessis, Nicholas & Chesson, Peter, 2019. "Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition," Theoretical Population Biology, Elsevier, vol. 130(C), pages 60-73.
    5. Song, Zhiyuan & Feldman, Marcus W., 2013. "Plant–animal mutualism in biological markets: Evolutionary and ecological dynamics driven by non-heritable phenotypic variance," Theoretical Population Biology, Elsevier, vol. 88(C), pages 20-30.
    6. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    7. Szabó, Péter, 2016. "Ideal free distribution of metabolic activity: Implications of seasonal metabolic-activity patterns on competitive coexistence," Theoretical Population Biology, Elsevier, vol. 111(C), pages 1-8.
    8. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Chi & Chesson, Peter, 2015. "The relative importance of relative nonlinearity and the storage effect in the lottery model," Theoretical Population Biology, Elsevier, vol. 105(C), pages 39-52.
    2. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    3. Zhang, Yu J. & Harte, John, 2015. "Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals," Theoretical Population Biology, Elsevier, vol. 105(C), pages 53-63.
    4. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
    5. Stump, Simon Maccracken & Chesson, Peter, 2015. "Distance-responsive predation is not necessary for the Janzen–Connell hypothesis," Theoretical Population Biology, Elsevier, vol. 106(C), pages 60-70.
    6. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    7. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    8. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    9. Engen, Steinar & Aagaard, Kaare & Bongard, Terje, 2011. "Disentangling the effects of heterogeneity, stochastic dynamics and sampling in a community of aquatic insects," Ecological Modelling, Elsevier, vol. 222(8), pages 1387-1393.
    10. Schreiber, Sebastian J., 2020. "When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie’s SAS-CFF model," Theoretical Population Biology, Elsevier, vol. 133(C), pages 141-149.
    11. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:84:y:2013:i:c:p:56-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.