IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v162y2025icp13-21.html
   My bibliography  Save this article

Species coexistence as an emergent effect of interacting mechanisms

Author

Listed:
  • Seidelmann, Thomas
  • Mostaghim, Sanaz

Abstract

Although extensively studied, the maintenance of biodiversity remains a highly debated and investigated topic of contemporary research in ecology. Several studies have quantified the contributions of various coexistence mechanisms to biodiversity. However, often stochastic individual-level interactions are abstracted away, or mechanisms are studied in isolation. The intertwined nature and reciprocal influences between mechanisms, as they arise from individual-level interactions, are therefore rarely considered. We propose a novel mechanistic simulation model grounded in neutral theory to capture and quantify emergent effects arising from such mechanism interactions. Three coexistence mechanisms are supported: storage effect, intransitivity, and resource partitioning. We show that basic neutral dynamics and related models of isolated mechanisms can be replicated. Beyond that, we observe difficult to predict, yet significant emergent effects for mechanism combinations. In some cases, coexistence times could be extended more than tenfold compared to the individual mechanisms’ performances. Our findings suggest that studies of individual coexistence mechanisms might be insufficient and indeed misleading for quantifying their overall impact on biodiversity. The particular combination of mechanisms and their interactions appear to be of vital importance.

Suggested Citation

  • Seidelmann, Thomas & Mostaghim, Sanaz, 2025. "Species coexistence as an emergent effect of interacting mechanisms," Theoretical Population Biology, Elsevier, vol. 162(C), pages 13-21.
  • Handle: RePEc:eee:thpobi:v:162:y:2025:i:c:p:13-21
    DOI: 10.1016/j.tpb.2024.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924001084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    2. Brian J. McGill, 2003. "A test of the unified neutral theory of biodiversity," Nature, Nature, vol. 422(6934), pages 881-885, April.
    3. Maria Dornelas & Sean R. Connolly & Terence P. Hughes, 2006. "Erratum: Coral reef diversity refutes the neutral theory of biodiversity," Nature, Nature, vol. 443(7111), pages 598-598, October.
    4. Peter Chesson & Jessica J. Kuang, 2008. "The interaction between predation and competition," Nature, Nature, vol. 456(7219), pages 235-238, November.
    5. Detto, Matteo & Muller-Landau, Helene C., 2016. "Stabilization of species coexistence in spatial models through the aggregation–segregation effect generated by local dispersal and nonspecific local interactions," Theoretical Population Biology, Elsevier, vol. 112(C), pages 97-108.
    6. Anazawa, Masahiro, 2018. "Interplay between habitat subdivision and minimum resource requirement in two-species competition," Theoretical Population Biology, Elsevier, vol. 120(C), pages 90-102.
    7. Maria Dornelas & Sean R. Connolly & Terence P. Hughes, 2006. "Coral reef diversity refutes the neutral theory of biodiversity," Nature, Nature, vol. 440(7080), pages 80-82, March.
    8. Igor Volkov & Jayanth R. Banavar & Fangliang He & Stephen P. Hubbell & Amos Maritan, 2005. "Density dependence explains tree species abundance and diversity in tropical forests," Nature, Nature, vol. 438(7068), pages 658-661, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tancredi Caruso & Jeff R Powell & Matthias C Rillig, 2012. "Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    2. Beeravolu, Champak R. & Couteron, Pierre & Pélissier, Raphaël & Munoz, François, 2009. "Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation," Ecological Modelling, Elsevier, vol. 220(20), pages 2603-2610.
    3. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    4. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
    5. Stump, Simon Maccracken & Chesson, Peter, 2015. "Distance-responsive predation is not necessary for the Janzen–Connell hypothesis," Theoretical Population Biology, Elsevier, vol. 106(C), pages 60-70.
    6. Rousselière, Damien & Joly, Iragäel, 2011. "A propos de la capacité à survivre des coopératives : une étude de la relation entre âge et mortalité des organisations coopératives agricoles françaises," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 92(3).
    7. Köhler, Peter & Huth, Andreas, 2007. "Impacts of recruitment limitation and canopy disturbance on tropical tree species richness," Ecological Modelling, Elsevier, vol. 203(3), pages 511-517.
    8. Han, Zhi-Quan & Liu, Tong & Zhao, Wen-Xuan & Wang, Han-Yue & Sun, Qin-Ming & Sun, Hui & Li, Bai-Lian, 2022. "A new species abundance distribution model including the hydrological niche differentiation in water-limited ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    9. Ammunét, Tea & Klemola, Tero & Parvinen, Kalle, 2014. "Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach," Theoretical Population Biology, Elsevier, vol. 92(C), pages 107-117.
    10. Kolasa, Jurek & Allen, Craig R. & Sendzimir, Jan & Stow, Craig A., 2012. "Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments," Ecological Modelling, Elsevier, vol. 245(C), pages 199-207.
    11. Malard, Julien & Adamowski, Jan & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Melgar-Quiñonez, Hugo, 2020. "Modelling predation: Theoretical criteria and empirical evaluation of functional form equations for predator-prey systems," Ecological Modelling, Elsevier, vol. 437(C).
    12. Yang, Yinghui & Bao, Liping, 2022. "Scale-dependent changes in species richness caused by invader competition," Ecological Modelling, Elsevier, vol. 469(C).
    13. Engen, Steinar & Aagaard, Kaare & Bongard, Terje, 2011. "Disentangling the effects of heterogeneity, stochastic dynamics and sampling in a community of aquatic insects," Ecological Modelling, Elsevier, vol. 222(8), pages 1387-1393.
    14. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    15. Schreiber, Sebastian J., 2020. "When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie’s SAS-CFF model," Theoretical Population Biology, Elsevier, vol. 133(C), pages 141-149.
    16. repec:plo:pone00:0049826 is not listed on IDEAS
    17. Tiefeng Piao & Jung Hwa Chun & Hee Moon Yang & Kwangil Cheon, 2014. "Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-6, July.
    18. Gatti, Roberto Cazzolla & Hordijk, Wim & Kauffman, Stuart, 2017. "Biodiversity is autocatalytic," Ecological Modelling, Elsevier, vol. 346(C), pages 70-76.
    19. Rampal S Etienne & James Rosindell, 2011. "The Spatial Limitations of Current Neutral Models of Biodiversity," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-8, March.
    20. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    21. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:162:y:2025:i:c:p:13-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.