IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v112y2016icp97-108.html
   My bibliography  Save this article

Stabilization of species coexistence in spatial models through the aggregation–segregation effect generated by local dispersal and nonspecific local interactions

Author

Listed:
  • Detto, Matteo
  • Muller-Landau, Helene C.

Abstract

Spatial interactions are widely acknowledged to play a significant role in sustaining diversity in ecological communities. However, theoretical work on this topic has focused on how spatial processes affect coexistence of species that differ in their strategies, with less attention to how spatial processes matter when competitors are equivalent. Furthermore, though it is recognized that models with local dispersal and local competition may sustain higher diversities of equivalent competitors than models in which these are not both localized, there is debate as to whether this reflects merely equalizing effects or whether there is also a stabilizing component. In this study, we explore how dispersal limitation and nonspecific local competition influence the outcome of species coexistence in communities driven by stochastic drift. We demonstrate that space alone acts as a stabilizing factor in a continuous space model with local dispersal and competition, as individuals of rare species on average experience lower total neighborhood densities, causing per capita reproductive rates to decrease systematically with increasing abundance. These effects prolong time to extinction in a closed system and enhance species diversity in an open system with constant immigration. Fundamentally, these stabilizing effects are obtained when dispersal limitation interacts with local competition to generate fluctuations in population growth rates. Thus this effect can be considered a fluctuating mechanism similar to spatial or temporal storage effects, but generated purely endogenously without requiring any exogenous environmental variability or species dissimilarities.

Suggested Citation

  • Detto, Matteo & Muller-Landau, Helene C., 2016. "Stabilization of species coexistence in spatial models through the aggregation–segregation effect generated by local dispersal and nonspecific local interactions," Theoretical Population Biology, Elsevier, vol. 112(C), pages 97-108.
  • Handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:97-108
    DOI: 10.1016/j.tpb.2016.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916300508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2016.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rampal S Etienne & James Rosindell, 2011. "The Spatial Limitations of Current Neutral Models of Biodiversity," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Shipeng & Li, Weide, 2020. "How spatial structure of species and disturbance influence the ecological invasion," Ecological Modelling, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tancredi Caruso & Jeff R Powell & Matthias C Rillig, 2012. "Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    2. Omar Al Hammal & David Alonso & Rampal S Etienne & Stephen J Cornell, 2015. "When Can Species Abundance Data Reveal Non-neutrality?," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:97-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.