IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v163y2025icp91-105.html
   My bibliography  Save this article

Connectivity, conservation and catch: Understanding the effects of dispersal between harvested and protected patches

Author

Listed:
  • Reurik, Femke N.
  • Segura, Juan
  • Hilker, Frank M.

Abstract

Overharvesting is a pressing global problem, and spatial management, such as protecting designated areas, is one proposed solution. This study examines how connectivity (in terms of dispersal rate) between protected and harvested areas affects the asymptotic total population size and the asymptotic yield, which are key questions for conservation management and the design of protected areas. We utilise a two-patch model with heterogeneous habitat qualities, symmetric dispersal and density-dependent growth functions in both discrete and continuous time. One patch is subject to proportional harvesting, while the other one is protected.

Suggested Citation

  • Reurik, Femke N. & Segura, Juan & Hilker, Frank M., 2025. "Connectivity, conservation and catch: Understanding the effects of dispersal between harvested and protected patches," Theoretical Population Biology, Elsevier, vol. 163(C), pages 91-105.
  • Handle: RePEc:eee:thpobi:v:163:y:2025:i:c:p:91-105
    DOI: 10.1016/j.tpb.2025.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580925000243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2025.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pezzey, John C. V. & Roberts, Callum M. & Urdal, Bjorn T., 2000. "A simple bioeconomic model of a marine reserve," Ecological Economics, Elsevier, vol. 33(1), pages 77-91, April.
    2. Gao, Daozhou & Lou, Yuan, 2022. "Total biomass of a single population in two-patch environments," Theoretical Population Biology, Elsevier, vol. 146(C), pages 1-14.
    3. Sanchirico, James N. & Wilen, James E., 2001. "A Bioeconomic Model of Marine Reserve Creation," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 257-276, November.
    4. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2015. "Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 106(C), pages 45-59.
    5. Wu, Hong & Wang, Yuanshi & Li, Yufeng & DeAngelis, Donald L., 2020. "Dispersal asymmetry in a two-patch system with source–sink populations," Theoretical Population Biology, Elsevier, vol. 131(C), pages 54-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mota, Rui Pedro & Nichols, Rachel, 2023. "Habitat considerations in optimal fisheries recovery," Ecological Economics, Elsevier, vol. 214(C).
    2. Johannesen, Anne Borge, 2007. "Protected areas, wildlife conservation, and local welfare," Ecological Economics, Elsevier, vol. 62(1), pages 126-135, April.
    3. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    4. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2006. "The Economic Payoffs from Marine Reserves: Resource Rents in a Stochastic Environment," The Economic Record, The Economic Society of Australia, vol. 82(259), pages 469-480, December.
    5. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "Protected areas in fisheries: a two-patch, two-species model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 1-20, June.
    6. Sanchirico, James N., 2003. "Designing a Cost-Effective Marine Reserve Network: A Bioeconomic Metapopulation Analysis," Discussion Papers 10624, Resources for the Future.
    7. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "Marine Protected Areas in Fisheries Management," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25532, International Association of Agricultural Economists.
    8. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "A Bioeconomic Analysis of Protected Area use in Fisheries Management," 2006 Annual meeting, July 23-26, Long Beach, CA 21469, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Polasky, Stephen & Costello, Christopher & Solow, Andrew, 2005. "The Economics of Biodiversity," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 29, pages 1517-1560, Elsevier.
    10. Wisdom Akpalu & Worku Bitew, 2014. "Optimum reserve size, fishing induced change in carrying capacity, and phenotypic diversity," Journal of Bioeconomics, Springer, vol. 16(3), pages 289-304, October.
    11. Janmaat, Johannus A., 2005. "Sharing clams: tragedy of an incomplete commons," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 26-51, January.
    12. Michael Finus & Raoul Schneider & Pedro Pintassilgo, 2019. "The Role of Social and Technical Excludability for the Success of Impure Public Good and Common Pool Agreements: The Case of International Fisheries," Graz Economics Papers 2019-12, University of Graz, Department of Economics.
    13. Greenville, Jared W. & MacAulay, T. Gordon, 2007. "Bioeconomic analysis of protected area use in fisheries management," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-22.
    14. Reithe, Siv & Armstrong, Claire W. & Flaaten, Ola, 2014. "Marine protected areas in a welfare-based perspective," Marine Policy, Elsevier, vol. 49(C), pages 29-36.
    15. Schnier, Kurt Erik, 2005. "Biological "hot spots" and their effect on optimal bioeconomic marine reserve formation," Ecological Economics, Elsevier, vol. 52(4), pages 453-468, March.
    16. Yamazaki, Satoshi, 2008. "Marine Reserves Switching under Uncertainty," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6003, Australian Agricultural and Resource Economics Society.
    17. Jiale Ban & Yuanshi Wang & Hong Wu, 2022. "Dynamics of predator-prey systems with prey’s dispersal between patches," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 550-569, June.
    18. Cartigny, P. & Gómez, W. & Salgado, H., 2008. "The spatial distribution of small- and large-scale fisheries in a marine protected area," Ecological Modelling, Elsevier, vol. 212(3), pages 513-521.
    19. Gao, Daozhou & Lou, Yuan, 2022. "Total biomass of a single population in two-patch environments," Theoretical Population Biology, Elsevier, vol. 146(C), pages 1-14.
    20. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "Protected Areas and the Management of Fisheries: An Institutional Perspective," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139739, Australian Agricultural and Resource Economics Society.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:163:y:2025:i:c:p:91-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.