IDEAS home Printed from
   My bibliography  Save this article

Duals of random vectors and processes with applications to prediction problems with missing values


  • Kasahara, Yukio
  • Pourahmadi, Mohsen
  • Inoue, Akihiko


Important results in prediction theory dealing with missing values have been obtained traditionally using difficult techniques based on duality in Hilbert spaces of analytic functions [Nakazi, T., 1984. Two problems in prediction theory. Studia Math. 78, 7-14; Miamee, A.G., Pourahmadi, M., 1988. Best approximations in and prediction problems of Szegö, Kolmogorov, Yaglom, and Nakazi. J. London Math. Soc. 38, 133-145]. We obtain and unify these results using a simple finite-dimensional duality lemma which is essentially an abstraction of a regression property of a multivariate normal random vector (Rao, 1973) or its inverse covariance matrix. The approach reveals the roles of duality and biorthogonality of random vectors in dealing with infinite-dimensional and difficult prediction problems. A novelty of this approach is its reliance on the explicit representation of the prediction error in terms of the data rather than the predictor itself as in the traditional techniques. In particular, we find a new and explicit formula for the dual of the semi-finite process {Xt;t

Suggested Citation

  • Kasahara, Yukio & Pourahmadi, Mohsen & Inoue, Akihiko, 2009. "Duals of random vectors and processes with applications to prediction problems with missing values," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1637-1646, July.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:14:p:1637-1646

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bondon, Pascal, 2002. "Prediction with incomplete past of a stationary process," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 67-76, March.
    2. Pascal Bondon, 2005. "Influence of Missing Values on the Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 519-525, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cheng, Raymond, 2015. "Prediction of stationary Gaussian random fields with incomplete quarterplane past," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 245-258.
    2. Kohli, P. & Pourahmadi, M., 2014. "Some prediction problems for stationary random fields with quarter-plane past," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 112-125.
    3. Alessandra Luati & Tommaso Proietti & Marco Reale, 2012. "The Variance Profile," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 607-621, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:14:p:1637-1646. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.