IDEAS home Printed from https://ideas.repec.org/p/cte/dsrepe/2940.html
   My bibliography  Save this paper

Aproximación lineal por tramos a comportamientos no lineales: estimación de señales de nivel y crecimiento

Author

Listed:
  • Álvarez, Luis J.
  • Delrieu, Juan C.

Abstract

El objeto de este trabajo es el de llegar a disponer de un indicador firme del nivel y del perfil de crecimiento de una variable económica, cuando ésta pasa un período temporal especffico en el que sufre los efectos de determinados acontecimientos especiales que truncan su tendencia. Lo anterior supone un comportamiento no lineal de naturaleza estocástica difícil de identificar, y para el que la aproximación del análisis de intervención no es buena. La alternativa propuesta es este trabajo es la modelización lineal por tramos. Tal modelización permite diseñar la estimación de la tendencia y el crecimiento subyacente de la variable en el período de cambio sin emplear filtros simétricos, que no son válidos para comportamientos no lineales. Esto se aplica a la serie mensual de importaciones no energéticas de la economía española que publica la Dirección General de Aduanas. Este trabajo acaba estudiando los efectos de tener o no en cuenta la solución que aquí se propone al trimestralizar la Cuenta Nacional de Importaciones con una tendencia del indicador mensual de aduanas.

Suggested Citation

  • Álvarez, Luis J. & Delrieu, Juan C., 1992. "Aproximación lineal por tramos a comportamientos no lineales: estimación de señales de nivel y crecimiento," DES - Documentos de Trabajo. Estadística y Econometría. DS 2940, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:dsrepe:2940
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/3a9a07ad-1f83-40f7-87c7-d8b833597173/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. R. Brubacher & G. Tunnicliffe Wilson, 1976. "Interpolating Time Series with Application to the Estimation of Holiday Effects on Electricity Demand," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 107-116, June.
    2. Burridge, Peter & Wallis, Kenneth F, 1984. "Unobserved-Components Models for Seasonal Adjustment Filters," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 350-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    2. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    3. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España.
    4. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.
    5. Comincioli, Nicola & Vergalli, Sergio, 2020. "Effects of Carbon Tax on Electricity Price Volatility: Empirical Evidences from the Australian Market," 2030 Agenda 305205, Fondazione Eni Enrico Mattei (FEEM).
    6. Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    7. Neil R. Ericsson & David F. Hendry & Hong-Anh Tran, 1993. "Cointegration, seasonality, encompassing, and the demand for money in the United Kingdom," International Finance Discussion Papers 457, Board of Governors of the Federal Reserve System (U.S.).
    8. Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Victor M. Guerrero & Daniel Peña, 1995. "Linear Combination of Information in Time Series Analysis," Working Papers 9507, Centro de Investigacion Economica, ITAM.
    10. A Matas-Mir & D R Osborn, 2003. "Seasonal Adjustment and the Detection of Business Cycle Phases," Economics Discussion Paper Series 0304, Economics, The University of Manchester.
    11. Maravall, Agustín, 1992. "Missing observations and additive outliers in time series models," UC3M Working papers. Economics 2888, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 374-386, July.
    13. Crafts, N. F. R. & Leybourne, S. J. & Mills, T. C., 1988. "Economic Growth In Nineteeth Century Britain: Comparisons With Europe In The Context Of Gerschenkron'S Hypotheses," Economic Research Papers 268342, University of Warwick - Department of Economics.
    14. Gomez, Victor & Maravall, Agustin & Pena, Daniel, 1998. "Missing observations in ARIMA models: Skipping approach versus additive outlier approach," Journal of Econometrics, Elsevier, vol. 88(2), pages 341-363, November.
    15. Justel, Ana & Sánchez, María Jesús, 1994. "Grupos atípicos en modelos econométricos," DES - Documentos de Trabajo. Estadística y Econometría. DS 10755, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Gómez, Víctor & Maravall, Agustín, 1997. "Missing observations in ARIMA models: skipping strategy versus additive outlier approach," DES - Working Papers. Statistics and Econometrics. WS 10576, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Huang, Tai-Hsin & Shen, Chung-Hua, 2002. "Seasonal cointegration and cross-equation restrictions on a forward-looking buffer stock model of money demand," Journal of Econometrics, Elsevier, vol. 111(1), pages 11-46, November.
    19. Josef Arlt, 2023. "The problem of annual inflation rate indicator," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2772-2788, July.
    20. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.

    More about this item

    Keywords

    Tendencia;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:dsrepe:2940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.