IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i9p4487-4501.html

Assessing influence in Gaussian long-memory models

Author

Listed:
  • Palma, Wilfredo
  • Bondon, Pascal
  • Tapia, José

Abstract

A statistical methodology for detecting influential observations in long-memory models is proposed. The identification of these influential points is carried out by case-deletion techniques. In particular, a Kullback-Leibler divergence is considered to measure the effect of a subset of observations on predictors and smoothers. These techniques are illustrated with an analysis of the River Nile data where the proposed methods are compared to other well-known approaches such as the Cook and the Mahalanobis distances.

Suggested Citation

  • Palma, Wilfredo & Bondon, Pascal & Tapia, José, 2008. "Assessing influence in Gaussian long-memory models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4487-4501, May.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4487-4501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00157-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bock, Hans-Hermann & Vichi, Maurizio, 2007. "Statistical Learning Methods Including Dimensionality Reduction," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 370-373, September.
    2. Pascal Bondon, 2001. "Recursive Relations for Multistep Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(4), pages 399-410, July.
    3. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    4. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    5. Tommaso Proietti, 2003. "Leave‐K‐Out Diagnostics In State‐Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 221-236, March.
    6. Yuzhi Cai & Neville Davies, 2003. "A simple diagnostic method of outlier detection for stationary Gaussian time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 205-223.
    7. Pascal Bondon, 2005. "Influence of Missing Values on the Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 519-525, July.
    8. Mohsen Pourahmadi & E. S. Soofi, 2000. "Prediction Variance and Information Worth of Observations in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 413-434, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasahara, Yukio & Pourahmadi, Mohsen & Inoue, Akihiko, 2009. "Duals of random vectors and processes with applications to prediction problems with missing values," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1637-1646, July.
    2. Poncela, Pilar & Ruiz Ortega, Esther, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    4. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    5. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    6. Dumas, Bernard & Harvey, Campbell R. & Ruiz, Pierre, 2003. "Are correlations of stock returns justified by subsequent changes in national outputs?," Journal of International Money and Finance, Elsevier, vol. 22(6), pages 777-811, November.
    7. Matteo Barigozzi & Marc Hallin, 2026. "The Dynamic, the Static, and the Weak: Factor Models and the Analysis of High‐Dimensional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 47(1), pages 201-219, January.
    8. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    9. Zirogiannis, Nikolaos & Tripodis, Yorghos, "undated". "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    10. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    11. Scott Brave & R. Andrew Butters, 2014. "Nowcasting Using the Chicago Fed National Activity Index," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 19-37.
    12. Tommaso Proietti, 2005. "Forecasting and signal extraction with misspecified models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 539-556.
    13. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    14. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    15. Benjamin Favetto & Adeline Samson, 2010. "Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 200-220, June.
    16. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    17. T.P. Koirala Ph.D., 2013. "Time-varying Parameters of Inflation Model in Nepal: State Space Modeling," NRB Working Paper 16/2013, Nepal Rastra Bank, Research Department.
    18. Tucker S. McElroy & Dimitris N. Politis, 2022. "Optimal linear interpolation of multiple missing values," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 471-483, October.
    19. Tommaso Proietti, 2008. "Estimation of Common Factors Under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and Its Main Components," Springer Books, in: Paula Brito (ed.), Compstat 2008, pages 547-558, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4487-4501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.